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This paper provides the statistical foundations for fractal analysis of real-life data. It begins 
by developing a fractal probability distribution based on a power-law formulation and proceeds by 
estimating the parameters through (a) maximum likelihood estimation method, (b) exponential 
parameter estimation, and (c) regression approach. Data analysis based on a fractal distribution 
hypothesis is heavily guided by the fact that for a random variable X with fractal distribution 
f(x;θ,λ), the random variable y=log(x/θ) has an exponential distribution with rate parameter                              
β = λ-1. A new Q-Q plot is introduced for assessing the fractality of observations. Likewise, tests of 
hypotheses about the fractal dimension λ are introduced based on the pivotal statistic y=log(x/θ). 
Test statistics are constructed whose null distributions are shown to be chi-square, for testing H0: 
λ=λ0 or beta distributions, for testing H0: λ1=λ2.
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1.0 Introduction
Since the publication of Mandelbrot’s (1983) book 

entitled “The Fractal Geometry of Nature”, interest in this 
science has grown exponentially. Applications of fractal 
geometry are noted in various fields of inquiry: medicine, 
ecology, agriculture, communications, engineering and the 
sciences (Palmer, 1988; Cohen, 1997; Russel, 1995) with 
surprising diversity. The full potential of fractal geometry 
can be more effectively achieved if analytic machinery 
can be developed to analyze numerical observations. 
This paper attempts to develop fractal statistics for this 
purpose using a power law formulation for fractal random 
variables.

The power law distribution is found to be pervasive 
in a wide variety of physical, biological, and man-made 
phenomena. These include the magnitudes of seismic 
tremors, the variety of moon crater sizes and of solar 
flares (Neukum & Ivanov, 1994), the food-search pattern 
of various animals (Humphries et al., 2010), the sizes of 
activity patterns of neuronal populations (Klaus et al., 
2011), the occurrence selected words in many languages, 
frequencies of family names, the species richness in 
clades of organisms (Albert et al., 2011), the sizes of 
power outages, wars, criminal charges per convict, and 
many other quantities (Newman, 2005). Few empirical 
distributions fit a power law for all their values, but rather 
follow a power law in the tail. 

A central concept in fractal geometry is the notion of 
a fractal dimension (λ). In the usual Euclidean geometry, 
the dimension of a geometric object is a non-negative 
integer less than or equal to 3. Thus, a point has zero 
(0) dimension; a line has one (1) dimension; a plane has 
two (2) dimensions and a cube has three dimensions. 
The generalization of the usual Euclidean geometry 
to accommodate dimensions greater than 3, namely, 
a Hilbert space, maintains the restriction of a positive 
integer dimension for the geometric entities in the 
space. Mandelbrot (1983) posited that geometric objects 
possessing non-integer dimensions can be constructed 

viz. on a line, a geometric object can be constructed that 
has dimension between 0 and 1, like 0.63, provided that 
the term “dimension” is properly defined. The fractal 
dimension of a geometric object is characterized as its 
space-filling property. 

Fractals are viewed as rugged, irregularly-shaped 
geometric objects arising out of endless repetitions of 
the same pattern at all scales. Self-similarly and scale-
invariance characterize all fractals and because of these, 
the box-counting dimension is defined as:

1.) 

where m = number of copies itself and r = scaling factor. 
The Cantor set or fractal dust has λ = 0.63; the Von Koch 
curve has λ= 1.26; the Sierpinski carpet has λ= 1.89. the 
higher the fractal dimension of an object, the more rugged 
it is compared to its Euclidean version. Thus, fractal dusts 
are coarser than points; the Von Koch curve is rougher 
than a line and so on.

To translate these purely geometric notions in 
statistical terms requires the development of a probabilistic 
model that captures the ideas of self-similarity and scale-
invariance leading to an observed randomness or data 
roughness. Section 2 develops the concept of a statistical 
fractal distribution. Section 3 concentrates on parameter 
estimation for the statistical model. Finally, Section 4 
provides statistical methods for testing hypotheses about 
the fractal dimension of random variables.

2.0 Model Development 
The idea of self-similarity and scale invariance 

pervades the development of a probabilistic model 
for fractal observations. One attribute of power laws is 
their scale invariance. Given a relation f(x)=axk, scaling 
the argument x by a constant factor c causes only a 
proportionate scaling of the function itself. That is,

             f(cx) =a(cx)k = ck f(x) α f(x)
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That is, scaling by a constant c simply multiplies 
the original power-law relation by the constant  ck. Thus, 
it follows that all power laws with a particular scaling 
exponent are equivalent up to constant factors, since 
each is simply a scaled version of the others.

Definition: Let X>0 be a positive random variable with 
distribution function F(x). Suppose that F’(x) = 
f(x) exists and is continuous for all positive x. Let 
f(x) = ax-λ,λ > 0, a > 0, x > θ > 0. Then, X is called a 
fractal random variable.

We note that the density function f(x) puts large 
mass for small values of x. Moreover, it is self-similar and 
scale-invariant because f(cx)=a(cx)-λ = c-λ (ax-λ)=c-λ f(x). The 
constant a is completely determined by the parameters 
θ and λ; since

and: 

Hence:
2.)

The definition of f(x) in (2) implies that for a fractal 
distribution: 

3.) 

from which: 

4.)

Recalling that the box-counting dimension of a 
fractal object is given by (1), we make the association     
m = f(x) and  from (4), and 

Definition: The exponent λ in the fractal distribution 
f(x;λ,θ) is called the fractal dimension of the 
random variable X. The probability density 
function f (x) determine the “number of copies” 
observed for x over the scale .

Let X>θ have the fractal distribution (2), Then: 

Theorem 1.  Let                                                  Then  
    has an exponential distribution with   

parameter β=λ-1.

Proof:Let          , then . Using transformation of 
variables, we obtain:

For an exponential random variable y with parameter 
β, we have that:

5.) 

Equation (5) is useful for estimating the fractal dimension 
λ. Let  then  is an 
estimate of E(y). Since β=λ-1, it follows from (5) that an 
estimate for λ can be obtained from:

6.)  or 

3.0 Estimation of Parameters
The cumulative distribution function F(x) of the 

random variable x is given by:

7.) 

which contains the parameters λ and θ. It is easy to 
show that the maximum-likelihood estimators of λ and θ 

respectively are:

8.)

                          

The maximum-likelihood estimator (MLE) of λ 
coincides with (6) which was derived using the fact that 

 is exponentially distributed with parameter (λ-1).
A slightly different estimator of λ can be derived 

using (4). From (4) we deduce that:

9.)

which is a linear model of the form:

10.)                                                                and  

yi* = log f (xi ), β1 = -λ

The errors εi are assumed F be independent and 
identically distributed with E(εi) = 0, Var (εi)=σ2,    The 
estimator for λ is 

 11.) 

Theorem 2. For the linear model (10), the least-
squares estimator     of  is an unbiased estimator of –λ.

Proof: From linear models, E( )=  (Graybill, 
1976) and so E( )= =–λ.       

The variance of can be derived as follows. From 
linear models, we have:
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12.)                                                              , where  

    and 
Since  , it follows that  and 
so:

13.)                                         for large n. 

Theorem 3. Let  be given by Equation (11). Then:

Proof: Apply the central limit theorem and equation (13).  
Observe that Theorem 3 is equivalent to: 

The estimator (11) of λ is the regression estimator 
which differs from the maximum likelihood estimator (8). 
In order to study the behavior of the MLE of λ, we need 
to observe that the strong  law of large numbers(SLLN) 
hold for:

  
That is: with probability 1 (wp1).

Slutsky’s lemma states that “if zn → α wp1 and g(x) 
is a continuous function continuous at x=α, then g(zn ) → 
g(x)wp1.” To make use of this lemma, let g(x) = 
Then, g(x) is a continuous function of x. Likewise:

However,  with probability 1, hence:

We have essentially proved that:

Theorem 4. The maximum likelihood estimator  given 
by equation (8) converges to λ with probability 1.

Since convergence with probability 1 implies 
convergence in probability i.e SLLN implies WLLN, 
Theorem 4 implies Theorem 3, Unlike the regression 
estimator of λ, however, the MLE of λ can be biased since:

               
In fact, by Jensen’s inequality upon noting that   

j(x)=  is a convex function of x, we obtain:

                   
It is not difficult to show that the bias of the maximum 

likelihood estimator is of the order O(n-1) which is rather 
small for n>100.

Similarly, Jensen’s inequality also implies:

14.) 

Equation (14) means that the uncertainty in 
maximum likelihood estimation is given by 

 
          
In summary, we found that the maximum likelihood 

estimator of λ is both asymptotically unbiased and 
efficient for λ. In contrast, the regression estimator of λ 
is unbiased and asymptotically efficient as well.

4.0 Data Analysis
The fractal distribution represented by Equation (2) 

have a properly defined mean only if the fractal dimension 
λ exceeds 2 and will have a finite variance when the 
fractal dimension exceeds 3. In practical situations, only 
the mean exists but the variance may not. Most identified 
power laws in nature have exponents such that the mean 
is well-defined but the variance is not, implying they 
are capable of having very large means due to a few 
large observations. A typical example is income. The 
distribution of incomes is typically right-skewed in that 
more people have lower incomes than higher incomes. 
The presence of just one millionaire in the group can 
easily distort the average income of a group. Income is 
distributed according to a power-law known as the Pareto 
distribution.

On the one hand, the use of traditional statistics 
to handle cases where the mean and the variance of 
a random variable X are assumed to exist will lead to 
misleading conclusions. These include the usual analysis 
of variance and regression approaches. Meanwhile, 
fractal statistics allows for more efficient interventions not 
otherwise available in traditional normal-based statistics. 
For example, if we know that the exhausts from cars are 
distributed according to some power law i.e. only very 
few cars contributed largely to the air pollution, then it 
would be sufficient to eliminate those very few cars from 
the road to reduce total exhaust substantially.

4.1 Assessing Fractal Characteristics From Data
The pivotal statistics that will be used throughout 

the analysis of fractal observations is the statistic:

                      

Let x1, x2,...,xn  be a random sample from a distribution 
F(x; λ, θ), x >0, assumed absolutely continuous with 
respect to a Lebesque measure. Then, the statistic 

 has an exponential distribution with parameter 
β = λ-1 if and only if X comes from the distribution:
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We have proved the “if” part. We now demonstrate 
the converse. Since  then:

               g(y)=(λ-1) e-(λ-1)y,   y > 0

The Jacobian of this transformation is:
Thus:

   

Consider the transformed data y1,y2,...,yn. if the 
observations x1, x2,…, xn   are iid  f (x;λ,θ), then y1,y2,..,yn. 
are iid exponential (β = λ-1). Let  then  
so that  is an estimate of the rate parameter β of 
the exponential distribution. A plot of the theoretical 
quantities of the exponential distribution with parameter 
β with the observed quantiles y(1) ≤  y(2) ≤ ... ≤ y(n) will yield 
a straight line with positive slope (m=1). A formal test 
of hypothesis can be carried out for this purpose. The 
theoretical ath quantile from an exponential distribution 
with parameter β is:

 15.) 

We plot the pairs  to yield the Q-Q plot:

Figure 1: Q-Q plot of the theoretical quantiles of exp(β) 
and the observed quantiles of  

A necessary condition for a random variable X to 
possess a fractal distribution f (x; θ, λ) is for it to be right-
skewed. That is, if μ=E(x) exists, then μ >  where = 
median (x). The expression for μ and are:

16.) 

       
and the condition μ and  can be expressed as:

17.)                   for λ > 2. 

4.2. Test of Hypothesis About λ
Since the distribution of  is known to be 

exponential with rate parameter β = λ-1, then a test of 
hypothesis about λ is equivalent to a test of hypothesis 
about β.  Consider a simple test of hypothesis about λ: 

H0: λ = λ0 versus  H1: λ = λ1 ,    λ1 < λ0

Or equivalently:
H0: β = β0 versus  H1: β = β1 ,    0 < β1 < β0

Let x1, x2,...,xn be a random sample from f (x; λ, θ). 
Then, y1, y2,...,yn  is a random sample from an exponential 
distribution with β = λ-1 and  Assume θ is 
known. The likelihood function  is:

18.) 

Similarly, the likelihood functions under H1 is:

19.) 

The likelihood ration (LR) is thus:

20.) 

If the null hypothesis were false, then LR ≤ k for some 
constant k with probability α. That is:

21.)            

Let V=  Then it is easy to show 
that  under H0. Thus, reject H0 iff 

4.3 Testing the Equality of Two (2) Fractal Dimensions.
Let be iid f(x;λ1,θ) and  be iid  

f(y;λ2,θ). The statistics  and  
i=1,2,3,…,n are then iid random samples from exp(β1=λ1-1) 
and exp(β2=λ2-2) respectively. We want to test H0: λ1 = λ2 

versus H1: λ1 ≠ λ2  at α level or equivalently: H0: β1 = β2 

versus H1: β1 ≠ β2 We state a result due to Nydick (2012):

Result 1:  Let μ and v be independent exponential 
variates with the same rate parameters λ. Then,  is 
distributed as:
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Let  and  Using the moment-
generating function technique, it is easy to show that:

22.) 

We extended the result of Nydick (2012) to:
Result 2: (Generalization) Let  and 

. If β1 = β2 , then the distribution of  is:

      

where  β(n1, n2) is the beta function of the second 
kind: 

  

Proof:
Let   and . Since μ and 

v are independent, it follows that their joint distribution 
is given by:

 

Let   and w = v. It follows that μ = wv and v = 
w, from which the Jacobian of the transformation is found 
to be J = w. The joint distribution of z and w becomes:

 

which simplifies to:

To find the marginal distribution of z, we integrate 
out w, to obtain:

 
where  β(n1, n2) is the beta function of the second 

kind:

Thus, for testing H0: λ1= λ2 versus H1: λ1≠ λ2 at α 
level, the decision rule is to reject H0 iff = . In 
practice, it is more convenient to refer to the F distribution 
rather than the beta distribution. This can be achieved 

through the following well-known relationship between 
the beta distribution and the F-distribution.

Result 3: If  then  has an 
F-distribution, F(2α1,2α2).

The decision criterion now becomes: “Reject H0 iff  
 > Fα(2n1,2n2)”.
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