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Abstract  
 Multivariate data can be classified into different groups. One useful statistical tool for classification is discriminant 
analysis whose major objective is to classify data into different populations based on a training sample. The problem arises when 
the data contain outliers which greatly affect the classification performance. Some studies used robust L-estimators such as 
median, truncated mean, trimean, and winsorized mean, yielding a robust version of Fisher’s Discriminant Function. In this study, 
the total probability of misclassification is computed through a simulation experiment using MATLAB to examine the behavior of 
the L-estimators.  Relative efficiencies are determined to compare the efficiency of the estimators. Results showed that, when using 
the robust L-estimators, the classification performance of the discriminant rules improved, and among the estimators, median 
is appropriate for classifying observations but the classification efficiency is limited. L-estimators outperformed the classical in 
terms of the relative efficiency. Among the L-estimators, winsorized mean is more stable in terms of classification efficiency. 
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1.0 Introduction  
 In general, discriminant analysis is a very useful tool for 
detecting the variables that allow the researcher to discriminate 
between different (naturally occurring) groups, and for classifying 
cases into different groups with a better than chance accuracy. The 
group assignment is based on a discriminant rule, which is used 
afterward to classify new observations into one of the two groups. 
Classification or discrimination has a wide range of applications. 
Some of the applications include spam filters for an email engine 
that sends good emails to the inbox and bad emails to a spam 
folder; voice/speech recognition software used to distinguish 
the source of the voice from among several speakers; methods to 
distinguish who is a bad risk for credit and who is creditworthy; 
methods to classify a patient's tumor as cancerous or benign.  
 The following are some of the studies that support the 
application of discriminant analysis in different fields. Cuarteros 
and Puerte (2017) used Linear Discriminant Analysis (LDA) to 
classify student’s engagement in computer games. The study 
found out that 96.83% is correctly classified as non-addicted and 
94.59% is correctly classified as addicted to computer games. 
Moreover, there is an average of 4.29% misclassification probability 
which implies that LDA performs better in classifying behavioral 
addiction. Gomez and Moens (2010) used the approach named 
Biased Discriminant Analysis (BDA) in email filtering, an extension 
of Linear Discriminant Analysis (LDA), and successfully proved 
that BDA offers better discriminative features in email filtering, 
gives stable classification results notwithstanding the number of 
features chosen, and robustly retains their discriminative value 
over time. Kumar and Andreou (1998) applied Heteroscedastic 
Discriminant Analysis (HDA) in speech recognition; a model-
based generalization of linear discriminant analysis derived in the 
maximum-likelihood framework to handle heteroscedastic-unequal 
variance-classifier models and observed a much better improvement 
in classification performance. Emel, et al (2003) evaluated the 
financial performance of client firms by Data Envelopment 
Analysis and used Discriminant Analysis in validating their results. 
 In the classical approach discriminant rules are often 
based on the empirical mean and covariance matrix of the data, 
or of parts of the data. But because these estimates are highly 
influenced by outlying observations, they become inappropriate 
at contaminated data sets. In real data sets, outliers are inevitable. 
The presence of these outliers can extinguish the validity of the 
sample mean, with that, misclassification of the observations 
may occur under this situation. L-estimators are the robust 
counterpart of the classical mean. Fisher’s discriminant function 
uses means to maximize the separation between classes of the 
observations. Hence, L-estimators would be best to compare with 
 
 

the classical mean in terms of their classification performance. 
Many researchers in science, industry, and economics work with 
huge amounts of data and these even increase the possibility of 
anomalous data and make their (visual) detection more difficult. 
Various researchers have developed an estimate that can address 
this problem and hence, robust discriminant rules were obtained. 
These robust estimates use an iterative scheme by updating the 
estimated group means with the location estimate of the centered 
observations. In the study of Hubert and Driessen (2004), they 
used MCD estimator to robustify discriminant rules and found out 
to be better than the classical with respect to the classification 
performance. Hubert and Engelen (2004) proposed a robust PCA 
(ROBPCA) method in several bio-chemical datasets and still it leads 
to better classification against its classical counterpart. In addition, 
Balase and Padua (2006) used L – estimator particularly the median 
to determine its efficiency in classifying observations. And their 
results showed a significant difference as to the classical.  
 The present study intends to use other L-estimators, 
such as median, truncated mean or trimmed mean, trimean and 
winsorized mean to further improve the classification performance 
of the discriminant rule using Monte Carlo simulation.  
  
2.0 Basic Concepts and Methodology  
2.1 Assumption of Discriminant Analysis  
 The major underlying assumptions of DA are (1) the 
observations are a random sample; (2) each predictor variable is 
normally distributed; (3) each of the allocations for the dependent 
categories in the initial classification are correctly classified; (4) there 
must be at least two groups or categories, with each case belonging 
to only one group so that the groups are mutually exclusive and 
collectively exhaustive (all cases can be placed in a group); (5) each 
group or category must be well defined, clearly differentiated from 
any other group(s) and natural. Putting a median split on an attitude 
scale is not a natural way to form groups. Partitioning quantitative 
variables is only justifiable if there are easily identifiable gaps at the 
points of division; (6) the groups or categories should be defined 
before collecting the data; (7) the attribute(s) used to separate the 
groups should discriminate quite clearly between the groups so 
that group or category overlap is clearly non-existent or minimal; 
(8) group sizes of the dependent should not be grossly different and 
should be at least five times the number of independent variables. 
 There are several purposes of discriminant analysis. 
One is to investigate differences between groups on the basis of 
the attributes of the cases, indicating which attributes contribute 
most to group separation. The descriptive technique successively 
identifies the linear combination of attributes known as canonical 
discriminant functions (equations) which contribute maximally to 
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group separation. Second, predictive DA addresses the question of 
how to assign new cases to groups. The DA function uses a person’s 
scores on the predictor variables to predict the category to which 
the individual belongs. Third, to determine the most parsimonious 
way to distinguish between groups. Fourth, to classify cases into 
groups. Statistical significance tests using chi square enable you to 
see how well the function separates the groups. And lastly, to test 
theory whether cases are classified as predicted.
 Discriminant analysis creates an equation which will 
minimize the possibility of misclassifying cases into their respective 
groups or categories.      
2.1 Outlier  
 In Statistics, an outlier is an observation that is numerically 
distant from the rest of the data. Outliers can occur by chance in any 
distribution, but they are often indicative either of measurement 
error or that the population has a heavy-tailed distribution. In the 
former case one wishes to discard them or use statistics that are 
robust to outliers, while in the latter case they indicate that the 
distribution has high kurtosis and that one should be very cautious 
in using tools or intuitions that assume a normal distribution. A 
frequent cause of outliers is a mixture of two distributions, which 
may be two distinct sub-populations, or may indicate 'correct trial' 
versus 'measurement error'; this is modeled by a mixture model.
 In larger samplings of data, some data points will be further 
away from the sample mean than what is deemed reasonable. This 
can be due to incidental systematic error or flaws in the theory that 
generated an assumed family of probability distributions, or it may 
be that some observations are far from the center of the data. Outlier 
points can therefore indicate faulty data, erroneous procedures, or 
areas where a certain theory might not be valid. However, in large 
samples, a small number of outliers is to be expected (and not due to 
any anomalous condition).
 Outliers, being the most extreme observations, may 
include the sample maximum or sample minimum, or both, 
depending on whether they are extremely high or low. However, 
the sample maximum and minimum are not always outliers 
because they may not be unusually far from other observations.  
 
2.2 General Form of an L-estimator of a Location Parameter
Stiegler (1979) proposed a class of robust estimators based on a 
weighted average of order statistics. His L – estimators of    are 
obtained by choosing weights,                            properly in the 
expression:  

 
 where        are the ordered observations,  

 
  

. Sample mean includes the class of  
 
L –  estimators. One example of an L – estimator is obtained by 
dropping  (     ) of the smallest and largest observations and 
then averaging the remaining (         )  x 100%  observations. This 
gives rise to the so-called  - trimmed mean or truncated mean,     . 
Trimean, an L – estimator, defined as a weighted average of the 
distribution's median and its two  quartiles:           .  
 
Another L – estimator, Winsorized mean, is more similar to the 
trimmed mean.   
 It involves the calculation of the mean after replacing given 
parts of a probability distribution or sample at the high and low end 
with the most extreme remaining values, typically discarding an 
equal amount of both; often 10 to 25 percent of the ends are replaced. 
Note that the sample mean and median are special cases of Equation 
(1). Stiegler (1979) showed that when the weights        are generated 
from the symmetric distribution   on ,           the L – estimators 
can be made highly efficient yet robust. 
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The extension of L – estimators to linear models was later 
proved by Padua (1989) particularly their asymptotic normality 
and convergence properties. Among all the robust alternatives to 
the sample mean, the L – estimators is clearly attractive because of 
its conceptual simplicity. With this, this paper considers the use of 
different L – estimators as replacement of the classical estimators.
 
2.3 Statistical Function Form and Influence Function of an  
L-estimator 
Consider a linear combination of order statistics of the sample of 
some function     :       
 

 
 
 where weights, 

     
, are generated by the  

 
symmetric distribution            on             so that             .    

The
  

total algebraic mass of           is 1. 
 
The statistical function form, T, which induces (2) is of the form:  
 
 
 
where            is defined by                     ,   .
Hence, the corresponding estimator is called a linear 
combination of order statistics or L – estimator.    
 
 In order to analyze the long-run behavior or asymptotic 
distribution of the L – discriminant function, we analyze the 
univariate estimator        . Let            be any probability distribution on     
           

symmetric about     .   Define the weights 
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Hampel (1968) introduced an approach to robustness that based on 
the influence function   . When the distribution of 
             of        has density   ,  the influence function:  
 
 

 
where        denotes the point mass at the point       and          is the 

L – estimator expressed as a functional of F becomes: 

 
where      . 

 

The asymptotic variance,     
 
 
          , is given by:  
 
  

 
 
which can be unified through an expansion of ( )T F  in Taylor  
 
series and taking appropriate expectations.  If     denotes the 
empirical measure of a sample of    independently and identically 
distributed (iid) random variables with common distribution F then 
under appropriate regularity conditions 

 as                       .   It follows, by the Strong Law of large Numbers (SLLN), 

that                    in probability as n →∞ .
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2.4 Fisher’s Linear Discriminant Function of Two Normal 
Populations

Consider p-variate observations 
111 12 1, ,..., nx x x coming from 

a first population 1 1 1( , )= Σ� f Nπ µ  and 
221 22 2, ,..., nx x x  

coming from a second population 2 2 2( , )f Nπ µ= Σ� . So the 

joint densities of 1 2' , ,..., pX x x x =    for the two populations 1π  

and 2π , are given by 

 

      
  
 
        

for

The optimal classification rule which is the one minimizing 
the likelihood of misclassification is a linear function given by

 
 
A new p-variate observation x  is classified as 1π  if 

 
 
 
 
where 

1c  and 2c  are costs of misclassifying an object of 1π   

and 2π , respectively, and 1p  and 2p are prior probabilities that x  will belong to, respectively, 1π  and 2π . In practice, these 
parameters are unknown. Then we set 0ϕ =  throughout this study. 

The sample counterparts of the population parameters in equation 
(8) are given by      
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for the second population          .
 
 Since the two populations are assumed to have the same 
covariance matrix        , their sample covariances        and        are 
pooled as follows:

As suggested by Wald (1944) and Anderson (1984), the population 
parameters 1µ , 2µ  andΣ , may be replaced by their sample 
counterparts 1x  , 2x  and S , respectively, for when the sample 
sizes increase, these estimates become indistinguishable from their 
corresponding population parameters with probability approaching 
1 by SLLN.
 The classification rule based on the population estimates 
may be then stated as follows:
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Else, classify x  as belonging to 2π .

                           ,   
then the function 

 
 
 
 is called Fisher’s linear discriminant function. Finally we classify x  in         if       

 
 
 
Else, classify x  as belonging to 2π . 

2.5 Proposed Robust Discriminant Functions   
 The classical estimator of Fisher’s Discriminant Function 
will be replaced by L – estimators, namely:

Truncated mean: 11px  ; 
11pS  for the first population 1π  and 

1 2px  ; 
1 2pS  for the second population 2π .

Trimean: 21px  ; 
21pS  for the first population 1π  and 2 2px  ; 

2 2pS  for the second population 2π .

Winsorized mean: 31px  ; 
31pS  for the first population 1π  and 

3 2px  ; 
3 2pS  for the second population 

2π .

Median: 41px  ; 
41pS  for the first population 1π  and 4 2px  ; 

4 2pS  for the second population 2π .
 
Hence the robust classification rule may be then stated as: 
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where 1npx  for the first population 1π , and 2npx  for the second 

population 2π , 1,2,3,4n = .

2.5 Total Probability of Misclassification (TPM)  
 Since the main goal of discriminant analysis is to correctly 
classify the data, we are particularly interested to the error rates. 
There are two types of error in misclassifying the new p-variate 
observation x  : (1) misclassifying x  in       , when in fact it actually 
lies in 2π  and (2) misclassifying x  in 2π  , when in fact it actually 

lies in 1π  . Then the probabilities of committing these errors are as 
follows: 

Now, the discriminant and classification technique is defined by 
dividing p-dimensional space into two regions such that    is the 

region where we make the decision to classify observation x  in 

1π  and 2R  is the region where we make the decision to classify 

x  in 2π  . We set up 1R and 2R  so that the total probability of 
misclassification (TPM):
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where [ ] [ ]11P P x π= ∈  and [ ] [ ]22P P x π= ∈ .

 Moreover, the relative efficiency of the estimated TPMs of 
the discriminant rules is determined as the ratio of their variances. 

If    , then the classical discriminant rule is more 

efficient than the L – discriminant rule. Otherwise, the latter rule 
is more efficient than the former rule. With this criterion measure, 
the classification performance of the discriminant rules may be 
evaluated.

2.7A Simulation Study of the Effects of Outliers on the TPM  
 In the simulation experiment, samples of sizes , n =10, 
20, 25, 30, 60, 100, 500 and 1000 random normally distributed 

observations 2p =  from two populations 1 1( , )Nπ µ Σ�  and 

2 2( , )Nπ µ= Σ
 

where 1

1
1

µ
 

=  
 

, 2

1
1

µ
− 

=  −   and 
1 0
0 1
 

Σ =  
 

 where generated. These samples were used for constructing the 
discriminant rules.

 Afterwards, we replaced 5%, 10%, 20% and 30% of the 
sample size n  by outliers as if they came from wrong populations. 
The resulting distribution of the contaminated samples is the 
Tukey’s contaminated normal model given by:
 
 
 

Specifically, the contaminated normal model has mean vectors 
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classical discriminant rule were computed.
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After computing the discriminant rules for classical, we 

obtained the robust discriminant rules based on the samples which 
were generated for the classical discriminant rules. To robustify the 
discriminant rules, we made use of the median, truncated mean or 
trimmed mean, trimean and winsorized mean vectors as estimators 
of iµ . The classical and robust discriminant rules were used to 
classify observations.
 
 We often generated 1000 observations for each of the 
10,000 validation samples from the source populations of the samples 
used constructing the discriminant rules. These observations were 
classified by classical and robust discriminant rules.

Since the populations of the validation samples were 
predetermined, we were able to compute the fraction of misclassified 
observations which is an estimate of the TPM for a discriminant rule. 
The average TPM and standard deviation for all discriminant rules 
were computed. The classification performances of the discriminant 
rules were compared based on their relative efficiency.

The simulation experiment was conducted using the 
MATLAB version 6.1. The algorithm used for implementing the 
experiment is listed as follows.

1. Generate uncontaminated samples of n observations from 
1 1( , )Nπ µ Σ�  and 2 2( , )Nπ µ= Σ .    

2.
 
Contaminate samples with observations from 

1

* *
1 ( , )Nπ µ Σ�  

and 2

* *
2 ( , )Nπ µ= Σ

.
     3. Construct the classical and L – discriminant functions such as 

median, truncated mean or trimmed mean, trimean and winsorized 
mean using the generated samples in (1) and (2).
4. Generate *n  observations from 1 1( , )Nπ µ Σ�  and 

2 2( , )Nπ µ= Σ
.

5. Classify x  as 1π  if 
1

2

( , ) 1
( , )

NH
N

µ
µ

Σ
= >

Σ . 
Else, x is classified 

as 2π .
6. Repeat (4) and (5) for 10,000k =  times.
7. Compute TPMs, average TPM, standard deviations, and relative 
efficiency for all discriminant rules.
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(19)

 ( ) ( ) ( ) ( )1 , ,pF x N Nε µ ε µ∗ ∗= − Σ + Σ  , 1 2µ µ≠   

                                                     and 0 1ε< < . 
(20)

Algorithm:

3.0 Highlights of the findings and discussion
Total Probability of Misclassification
 The simulation results are summarized in Tables 1 to 5. Table 1 presents the total probability of misclassification 
of classical and the different L-estimators at 0% level of contamination.    

Table 1: Comparison of TPM for Classical and L-Estimators (median, truncated mean, trimean, winsorized mean) of Discriminant Function at 
0% Contamination for 10,000 Validation Samples
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Table 1 shows the classification performance of the classical and different L-estimators of an uncontaminated data. Observed that from a small 
to moderate samples 25 30n and= , classical discriminant function performs better with 7.87% and 7.94% probability of misclassification, 
respectively. This is a good indicator that classical discriminant rule can perform well in a data with no outliers.  But as the sample size 
increases the classification performance of the robust L-estimators also increases which implies a decreasing misclassification rate. Consider 
the median, from a TPM of 10.56% at 10n = drops to 7.85% at 1000n = . This is also hold true to other L-estimators. Moreover, the 
coefficient of variation of the classical rule is 0.1077 while the L-discriminant rules have coefficient of variation of 0.1083, 0.1080, 0.1094, and 
0.1080, respectively. 

 
Table 2 presents the classification performance of the discriminant rules at 5% level of contamination which turn out to be very good 

in favor of the robust L-estimators. 

 Table 2: Comparison of TPM for Classical and L-Estimators (median, truncated mean, trimean, 
winsorized mean) of Discriminant Function at 5% Contamination for 10,000 Validation Samples

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contaminating the data at 5% level of contamination, the misclassification rate of the different robust L-estimators decrease from 
10.55% ( )10n =  to 7.95% ( )1000n = . Although the performance of the classical is not good as the robust estimators, still it can manage 
to compete with robust L-estimators even in the presence of outliers. It is noticeable that the median outperforms the other L-estimators with 
10.55% ( )10n = to 7.95% ( )1000n =  misclassification rate. The significant difference of the classification performance of classical and 
different L-estimators as shown in Table 2 which further shows the consistency of the TPM values of the median as the sample size increases. 
At 500n = , noticed that the truncated mean has the highest misclassification rate of 8.75% but decreases its value as sample size becomes 
large.
 At 10% level of contamination, the classification performance of the classical and L-estimators is recorded in Table 3 which turns out  
to be very close as sample size increases.

Table 3: Co mparison of TPM for Classical and L-Estimators (median, truncated mean, trimean, winsorized mean) 
of Discriminant Function at 10% Contamination for 10,000 Validation Samples 

 Sample Sizes
  10 20 25 30 60 100 500 1000

Classical TPM 0.2161 0.1666 0.1139 0.0869 0.0871 0.1272 0.0793 0.0809

SD 0.0122 0.0118 0.0100 0.0089 0.0089 0.0106 0.0086 0.0086
       L – Estimators          

Median TPM 0.2506 0.1893 0.1177 0.0851 0.0997 0.1372 0.0789 0.0787
SD 0.0137 0.0122 0.0102 0.0089 0.0094 0.0110 0.0086 0.0085

          

Truncated Mean TPM 0.2428 0.1845 0.1216 0.0891 0.0932 0.1456 0.0789 0.0789

SD 0.0135 0.0121 0.0103 0.0090 0.0092 0.0112 0.0086 0.0085
          

Trimean TPM 0.2449 0.1771 0.1026 0.0919 0.0852 0.1267 0.0793 0.0808

SD 0.0137 0.0118 0.0095 0.0089 0.0087 0.0105 0.0085 0.0085
          

Winsorized Mean TPM 0.2413 0.1864 0.1192 0.0866 0.0962 0.1424 0.0786 0.0788

SD 0.0135 0.0122 0.0103 0.0090 0.0092 0.0111 0.0086 0.0084
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Increasing the level of contamination, decreases the misclassification rate of all robust L-estimators with median as the lowest, which gives 

7.87% TPM ( ).10, 1000nε = =
 leaving behind the classical discriminant function with 8.09% ( ).10, 1000nε = =

. In a moderate 

sample size, 30n = , median gives the lowest misclassification rate of 8.51% followed by the winsorized mean with 8.66%. However, 

trimean gives 12.67% TPM at 100n = , the lowest value for all estimators.  Table 3 shows the robust estimators behave almost the same 
as sample size increases which ranges from 7.87% to 7.89% of the total probability of misclassification. These imply that the robust 
L-estimators have better classification performance at 10% level of contamination. 

 For 20% level of contamination, the classification performance results are presented in Table 4.

Table 4: Comparison of TPM for Classical and L-Estimators (median, truncated mean, trimean, winsorized mean) of 
Discriminant Function at 20% Contamination for 10,000 Validation Samples 

Sample Sizes
10 20 25 30 60 100 500 1000

Classical TPM 0.0904 0.1212 0.2880 0.1182 0.0935 0.0796 0.0838 0.0803
SD 0.0090 0.0098 0.0111 0.0096 0.0090 0.0086 0.0087 0.0087

L - Estimators

Median TPM 0.0856 0.0826 0.0804 0.0825 0.0799 0.0823 0.0787 0.0788
SD 0.0088 0.0086 0.0085 0.0086 0.0085 0.0088 0.0085 0.0086

Truncated Mean TPM 0.1034 0.0880 0.0918 0.0851 0.0895 0.0821 0.0807 0.0794
SD 0.0095 0.0089 0.0091 0.0089 0.0090 0.0087 0.0086 0.0085

Trimean TPM 0.1131 0.0945 0.2652 0.1573 0.0915 0.0791 0.0838 0.0801
SD 0.0096 0.0092 0.0113 0.0103 0.0090 0.0085 0.0087 0.0087

Winsorized Mean TPM 0.0917 0.0835 0.0847 0.0789 0.0802 0.0838 0.0790 0.0787
SD 0.0091 0.0088 0.0088 0.0086 0.0086 0.0087 0.0086 0.0085

  
 At 20% level of contamination, still the different robust L-estimators perform better than the classical discriminant function. The 
L-estimators median and winsorized mean have a very close classification performance with 7.87% ( )1000n =

 
misclassification rate. As 

shown in Table 4, classical discriminant function is far behind the robust L-estimators and increases its misclassification rate as the number of 
samples size increases. Looking at the table, the trimean is quiet close to the classical discriminant rule, but still shows a significant difference 
with respect to their total probability of misclassification. Focusing on 60n = , their TPM’s are 9.35% and 9.15%, respectively.
 Table 5 shows that, at 30% level of contamination, there are significant differences between the total probability of misclassification 
of the classical and L-estimators discriminant functions. These are important bases in comparing the discriminant rules.

Table 5. Comparison of TPM for Classical and L-Estimators (median, truncated mean, trimean, winsorized mean) 
of Discriminant Function at 30% Contamination for 10,000 Validation Samples. 

Sample Sizes
10 20 25 30 60 100 500 1000

Classical TPM 0.2596 0.1911 0.1102 0.0804 0.1283 0.0921 0.0798 0.0788
SD 0.0113 0.0110 0.0098 0.0087 0.0100 0.0090 0.0086 0.0086

L - Estimators

Median TPM 0.0816 0.0860 0.0794 0.0949 0.0802 0.0818 0.0828 0.0788
SD 0.0086 0.0088 0.0086 0.0093 0.0086 0.0087 0.0088 0.0085

Truncated Mean TPM 0.1190 0.1546 0.1496 0.0884 0.0886 0.0852 0.0787 0.0797
SD 0.0099 0.0105 0.0112 0.0089 0.0089 0.0088 0.0085 0.0085

Trimean TPM 0.1361 0.1553 0.1241 0.0802 0.1309 0.0909 0.0799 0.0791
SD 0.0103 0.0107 0.0104 0.0086 0.0100 0.0089 0.0085 0.0085

Winsorized Mean TPM 0.1378 0.1196 0.1072 0.0925 0.0786 0.0813 0.0809 0.0788
SD 0.0104 0.0097 0.0098 0.0091 0.0086 0.0087 0.0086 0.0085

 The L-estimators showed the consistency of their performance even if the level of contamination increases to 30%. In all the other 
cases we see that outliers have a large impact on the classification rule, leading to a much comparable misclassification probability for classical 
and the different L-estimators as well. Looking at the misclassification probabilities for each estimator in Table 5, there is a remarkable result. 
For the case of the median, it attains a very small TPM of 8.16% at 10n = , and showing its consistency as sample size increases with low 

misclassification rate of 7.88% ( )1000n = .
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This also supports the results of Balase and Padua (2006) 

that the L-estimator median outperformed the classical in terms 
of classification performance.  As shown in Table 5, among the 
L-estimators (median, truncated mean, trimean, winsorized mean), 
median performs at its best. We may conclude that the L-estimator 
median is very appropriate robust estimator for classification 
purposes, with respect to the total probability of misclassification 
(TPM), even if the level of contamination and sample size increases.

3.1Comparison of Classical and L-estimators Discriminant 
Functions in terms of Relative Efficiency
 The relative efficiency of the discriminant rules was 
determined to compare the efficiency of the estimators. The results 
are summarized in Tables 6 to 9. 
 Table 6 shows the relative efficiency results between 
the classical and the L-estimator median.  

Table 6: Relative Efficiency Between Classical and L-Estimator 
Median Discriminant Function 

Sample Size
Level of 
Conta-

mination
10 20 25 30 60 100 500 1000

0.00 0.99 1.06 1.02 0.99 1.04 0.99 1.03 1.00

0.05 0.97 1.10 1.22 1.01 0.94 0.90 1.00 1.01

0.10 0.79 0.94 0.95 1.02 0.90 0.93 1.00 1.04

0.20 1.05 1.31 1.71 1.25 1.12 0.95 1.05 1.02

0.30 1.71 1.57 1.30 0.87 1.36 1.06 0.95 1.01
 

Based on the simulation results presented in Tables 1 to 
5, the relative efficiency of the estimators (classical vs median) was 
determined and summarized in Table 6. It shows that in some level 
of contamination, classical is efficient than the estimator median. 
Taking for instance, in a moderate sample, n=30, the classical is 
99% and 87% efficient than the median at 0% and 30% level of 
contamination, respectively. But as the presence of outliers in the 
data increases, the efficiency of the classical tends to decrease as 
we increase also the sample size. For the large samples, n=500 and 
1000, the estimator median completely outperformed the classical 
rule and increases its efficiency from 100% to 105% as the level 
of contamination increases. This further implies that the robust 
estimator median is more efficient than the classical, as already 
shown in the study of Balase and Padua (2006).
 Table 7 shows the relative efficiency results between the 
classical and the L-estimator truncated mean. 

Table 7: Relative Efficiency Between Classical and L-Estimator 
Truncated Mean Discriminant Function

Sample Size
Level of 
Conta- 

mination
10 20 25 30 60 100 500 1000

0.00 0.98 1.03 1.00 0.98 1.02 0.98 1.01 1.00

0.05 1.02 1.04 1.32 1.04 0.88 0.96 0.97 1.02

0.10 0.81 0.96 0.94 0.98 0.94 0.90 0.99 1.02

0.20 0.89 1.22 1.52 1.18 1.01 0.98 1.03 1.04

0.30 1.29 1.11 0.76 0.96 1.28 1.05 1.01 1.01
 Comparing the efficiency of the classical rule and truncated 
mean, the estimator truncated mean is 101% more efficient than 
classical rule. Although classical rule is outperformed by the 
truncated mean, classical can still be efficient in some instances. 
For example, in sample sizes,n=60, 100 and 500 , the classical is 
totally efficient by 94%, 98% and 99% against the truncated mean, 

 Table 8 shows the relative efficiency results between the 
classical and the L-estimator trimean. 

Table 8: Relative Efficiency Between Classical and L-Estimator 
Trimean Discriminant Function 

Sample Size
Level of 
Conta-

mination
10 20 25 30 60 100 500 1000

0.00 0.98 1.00 1.00 0.99 1.00 0.98 1.00 0.98

0.05 1.03 1.07 1.27 1.03 0.83 0.99 1.00 0.99

0.10 0.79 0.99 1.11 1.00 1.05 1.03 1.03 1.03

0.20 0.88 1.14 0.97 0.88 1.02 1.02 1.00 1.01

0.30 1.20 1.06 0.89 1.03 0.99 1.01 1.01 1.01

   From Table 8, notice that at n = 1000, classical rule is efficient 
in some level of contamination. This may imply that classical rule 
can perform well in classifying observations even in the presence 
of outliers. But, observed the sensitivity of the classical rule in large 
sample size containing outliers. Consider n=500, in all levels of 
contamination, classical is outperformed by the trimean and hence, 
the trimean is more efficient than classical rule. 

Table 9 shows the relative efficiency results between the 
classical and the L-estimator winsorized mean.

 
Table 9: Relative Efficiency Between Classical and L-Estimator 

Winsorized Mean Discriminant Function 

 
Sample Size

Level of 
Conta-

mination
10 20 25 30 60 100 500 1000

0.00 1.02 1.05 0.98 0.97 1.04 0.98 1.02 1.00

0.05 1.03 1.11 1.30 1.06 0.94 0.96 0.99 1.01

0.10 0.81 0.94 0.94 1.00 0.93 0.92 1.00 1.04

0.20 0.98 1.24 1.59 1.26 1.11 0.98 1.04 1.04

0.30 1.18 1.28 1.01 0.91 1.36 1.07 0.98 1.02

 Looking at the relative efficiency values between classical 
rule and winsorized mean in Table 9, the classical can compete 
with winsorized mean in classification purposes. Taking the 30% 
level of contamination for example, classical is 98% efficient than 
winsorized mean at n=500. But, in a very large sample, n=1000, the 
efficiency of the winsorized mean outperformed the classical rule.
 Comparing classical discriminant functions with all the 
robust L-estimators (median. truncated mean, trimean, winsorized 
mean) with respect to the relative efficiency shows that robust 
estimators are more efficient than classical. The L-estimators 
become more and more efficient as sample size becomes large and 
as the level of contamination increases. 
 
3.2 Comparison of Median and Other L-estimators Discriminant 
Functions in terms of Relative Efficiency
 Since the robust L-estimators are more efficient than 
classical rule, comparing the robust estimators against each other 
will determine the efficient L-estimator. Tables 10 to 12 show the 
relative efficiency results between median and other L-estimators.
 Table 10 shows the relative efficiency results between the 
L-estimator median and the L-estimator truncated mean.
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Table 10: Relative Efficiency Between L-Estimator Median and 
Truncated Mean Discriminant Function

 Sample Size
Level of 
Conta-

mination
10 20 25 30 60 100 500 1000

0.00 0.99 0.97 0.99 0.99 0.98 0.98 0.98 1.01

0.05 1.05 0.94 1.08 1.03 0.94 1.07 0.97 1.02

0.10 1.02 1.02 0.98 0.96 1.04 0.98 0.99 0.99

0.20 0.85 0.93 0.88 0.94 0.90 1.03 0.98 1.02

0.30 0.76 0.71 0.59 1.10 0.94 0.99 1.06 1.01

 Between the median and truncated mean, yet it is confusing 
to determine which is more efficient due to up and down behavior of 
the relative efficiency values as shown in Table 10. In different levels 
of contamination and different sample sizes, their efficiency varies. 
For instance, at 20% level of contamination, the estimator median 
is efficient in sample sizes n=60 and n=500, but not in n=100 
and 1000 and vice versa in other levels. But, to determine which 
is more efficient, the consistency of values when n=1000 gives the 
conclusion that truncated mean is more efficient than median.

Table 11 shows the relative efficiency results between the 
L-estimator median and the L-estimator trimean. 

Table 11: Relative Efficiency Between L-Estimator Median and 
Trimean Discriminant Function 

 Sample Size
Level of 
Conta-

mination
10 20 25 30 60 100 500 1000

0.00 0.99 0.94 0.99 1.00 0.96 0.99 0.97 0.98

0.05 1.06 0.98 1.04 1.02 0.88 1.10 1.01 0.98

0.10 1.00 1.06 1.17 0.99 1.17 1.11 1.03 0.99

0.20 0.84 0.87 0.57 0.70 0.90 1.07 0.95 0.97

0.30 0.70 0.67 0.69 1.18 0.73 0.95 1.06 1.01

 As presented in Table 11, it is clear that in samples 
n = 100 and n = 500, the estimator trimean is more efficient 
than the median having the values at least 1.01. However, 
at n=1000, most of the relative efficiency values are 
less than 1 which implies that median is better than trimean.  

Table 12: Relative Efficiency Between L-Estimator Median and 
Winsorized Mean Discriminant Function 

 Sample Size

Level of 
Conta-

mination
10 20 25 30 60 100 500 1000

0.00 1.03 0.99 0.97 0.98 1.00 0.99 0.99 1.00

0.05 1.06 1.01 1.06 1.05 1.00 1.07 0.99 1.00

0.10 1.03 1.00 0.99 0.98 1.04 0.99 1.00 1.00

0.20 0.94 0.95 0.93 1.00 0.99 1.03 0.99 1.02

0.30 0.69 0.81 0.78 1.04 1.00 1.01 1.04 1.02

 Comparing the efficiency of both robust L-estimators 
median and winsorized mean, Table 12 shows that both 
estimators are efficient in different cases. Median may be 
efficient in moderate samples with high contamination level, and 
winsorized mean in large samples for some contamination levels. 
For large sample, n=1000, the relative efficiency values are not 
less than 1.00 in all levels of contamination, this implies that 
winsorized mean is more efficient than the median.  
 The efficiency of the median varies from sample to sample 

outperformed by other L-estimators such as truncated 
mean and winsorized mean in terms of classification efficiency. 

3.3Comparison of Truncated Mean and L-estimators Discriminant 
Functions in terms of Relative Efficiency
 The L-estimators truncated mean, and winsorized mean 
are more efficient than median, we will compare the efficiency of 
the truncated mean against winsorized mean. Table 13 shows the 
summarized results.

Table 13: Relative Efficiency Between L-Estimator Truncated Mean 
and Winsorized Mean Discriminant Function

Sample Size

Level of 
Conta-

mination
10 20 25 30 60 100 500 1000

0.00 1.04 1.02 0.98 0.99 1.02 1.01 1.01 0.99
0.05 1.01 1.07 0.99 1.02 1.07 1.00 1.02 0.98
0.10 1.00 0.98 1.01 1.02 1.00 1.01 1.01 1.02
0.20 1.10 1.02 1.05 1.07 1.10 1.00 1.01 1.00
0.30 0.91 1.15 1.33 0.95 1.06 1.02 0.97 1.01

 Looking at Table 13, both estimators, truncated mean 
and winsorized mean, are still efficient in different contamination 
level and sample sizes. However, considering the consistency of the 
efficiency values, winsorized mean is more efficient than truncated 
mean. Hence, we may conclude that classification efficiency-wise, 
the winsorized mean is more stable compared to all L-estimators.

4.0 Conclusions
Based on the results, robust L-estimators discriminant 

analysis performs better than classical rule in classifying objects 
even in uncontaminated data sets. In the presence of outliers, the 
different L-estimators outperformed the classical rule with low 
misclassification rates, performing better as the number of sample 
size increases. The sensitivity of the classical discriminant rule when 
outliers are introduced was observed, as already shown in different 
studies. Among the L-estimators such as median, truncated mean, 
trimean and winsorized mean, median is consistent with respect to 
the total probability of misclassification even both sample size and 
level of contamination increases. Hence, median is the appropriate 
robust L-estimators in terms of classification performance. When 
it comes to classification efficiency, the L-estimators are still more 
efficient than classical rule. However, comparing the L-estimators 
median, truncated mean, trimean, and winsorized mean with 
respect to their relative efficiency, winsorized mean surpass the 
other L-estimators with a more stable relative efficiency rate. Hence, 
the efficiency of the estimator in classification does not follow the 
low misclassification rate of the estimators. 
  The need to robustify a discriminant rule using the different 
L-estimators can lead to a better classification performance. And 
among the robust L-estimators, it is recommended to use the 
median because classification performance wise, it is consistent of 
giving very low misclassification rate but with proper cautions for its 
efficiency is limited. Although winsorized mean does not give very 
low misclassification rate, its classification efficiency is stable. It is 
suggested to use other robust estimators (e.g M, R and S) to evaluate 
classification performance and efficiency of the discriminant rules.
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