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Abstract
The presence of volatility in many financial time series data is one of the problems that cause the variance to be non-

constant. The GJR-GARCH (p, q) is a model that takes into account time-varying volatility, allowing positive and negative 
shocks to have distinct effects. This study provides the estimates of the GJR-GARCH (p, q) model using the Bayesian 
approach. Student-t distribution is used as prior error distribution. It derives the posterior distribution of the GJR-GARCH 
(p, q) model with student-t distribution, specifically the parameters α and β, latent variable ω, and degrees of freedom v.
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1.0 Introduction
Volatility is the frequency at which the market price of an 

investment increases or decreases. It is measured by calculating 
the standard deviation of the annualized returns over a given 
period of time. If the costs of a security fluctuate rapidly in a short 
period of time, it is termed to have high volatility. Conversely, if 
the prices of a security fluctuate slowly over a longer period, it is 
termed to have low volatility. Robert Engle in 1982 developed the 
Autoregressive Conditional Heteroskedastic (ARCH) model which 
was the first model of time-varying volatility. The ARCH model grew 
rapidly as a volatility forecasting technique during the last thirty 
years and has been applied to numerous economic and financial 
data series. However, in many applications with the ARCH model, 
a long lag length or a large number of parameters are required to 
approximately model the data. Thus, Engle’s student, Tim Bollerslev 
(1986), developed the Generalized Autoregressive Conditional 
Heteroskedastic (GARCH) model in which there is past conditional 
errors aside from conditional variance as part of the model. GARCH 
model had the same properties as the ARCH model but required less 
parameters to model heteroskedasticity precisely. When using these 
two models, there is an imposed restriction on the parameters to 
assure that the variance is positive. 

For this reason, Nelson (1991) presented an alternative way 
to the GARCH model, the Exponential GARCH (EGARCH) model, by 
modifying it to allow the asymmetric effect of positive and negative 
stock return. Another model which allows the positive and negative 
shocks to have different impact on the volatilities is the GJR-GARCH 
model, which was introduced by Glosten et al., (1993). Later, many 
models were developed and extended regarding volatility models. 
These models were estimated using the Maximum Likelihood 
Estimation (MLE). Maximum Likelihood estimates are known to 
be statistically efficient, and its likelihood ratio test provides a 
powerful and general method of inference. However, the complexity 
of the computations of maximum likelihood estimates made it 
less practical in many situations. According to Engle (1982), the 
normality assumption of the error terms may not be appropriate 
in some applications since heavy tails are commonly observed in 
economic and financial data. Some study shows that the student-t 
provides a suitable description for this type of data. Bollerslev (1987) 
introduced the student-t GARCH model in which the error terms 
are assumed to be t-distributed and conclude that GARCH models 
with normal errors do not seem to fully capture leptokurtosis. This 
paper derived the parameters of the GJR-GARCH (p, q) model with 
student-t distribution error using the Bayesian estimation. 

2.0 Literature Review 
The GJR-GARCH model was named after the authors who 

introduced it (Glosten et al., 1993), as an alternative way to model 
asymmetric effects. It extends the standard GARCH to include 
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asymmetric terms that capture an important phenomenon in the 
conditional variance. Following Ardia (2008), it is assumed that the 
error terms can be modeled as: 

where α0>0, αi≥0 (i=1,…,q), αi
*≥0 (i=1,…,q) and βj≥0(j=1,…,p) to 

guarantee that the conditional variance is positive. Sv (0,1) is the 
standard student-t density with v degrees of freedom. 

Bayesian Estimation
Definition 1 

If A and B are events in the sample space Ω and P(A)>0, then the 
conditional probability of B given A is 

In case P(A)=0, we make the convention that  P(B|A)=P(B).

Theorem 1 (Bayes’ Rule) Let A and B be even in the probability 
space (Ω,F,P) which are non-empty sets. Then the probability A given 
B is 

Let  A1,A2,A3,… be a partition of the sample space and let B be any set. 
Then, for each  i=1,2,… , 

The Prior Distribution 
In the Bayesian point of view, the parameter θ is treated as a 

random variable and the prior information is an essential problem 
for many statistical decisions. A convenient way to quantify such 
information is to express it as a probability distribution. In Bayesian 
Statistical inference, a prior probability distribution, often called 
prior, of an uncertain quantity is the probability distribution that 
would express one’s beliefs about quantity before some evidence for 
the parameters of prior distribution are called hyperparameters. 

Definition 2 
Let X=(x1,…,xn) be a random sample and ϴ=θ1,…,θk be the 
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parameter of interest and π(ϴ) be the prior distribution associated 
with ϴ and f(X|ϴ) the distribution from which the sample was taken. 
Then the posterior distribution of ϴ given X is defined as 

where

The likelihood function of the sample X given ϴ, L(ϴ|X) is a function 
of ϴ and not of the sample X.

Proposition 1 The model given by 

is equivalent to the model given in equation (1) where IG denotes the 
Inverted Gamma density with parameters      and       . εt is a sequence 
of independent and identically distributed random variables with      
E(εt )=0 and var(εt )=1.

Proof: Let the parameters of the model be ∆=(α,β,v) . From equation 
(1), the density function of ωt is 

We can write the joint density of T x 1 vector ω=(ω1,ω2,…,ωT )’ as 

The density function of the error term ut in (3) is

Then we express the likelihood of (∆,ω) as

Using Bayes Theorem, 

Integrating π(∆,ω|u) with respect to ω where 0<ωt<∞,

which is the likelihood function of the parameters  ∆=(α,β,v) where

Proposition 2. Let  a  T  x  1  vector y = (y1,y2,…,yT)’ and a T  x  m 
matrix X,  then  we  can express the  approximate  likelihood function 
of  γ as follows: 
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And the posterior density of γ as 

Then the posterior density of  γ is given by

3.0 Theoretical Results
Deriving the Posterior Density of the GJR-GARCH Parameters

To derive the posterior densities of the parameters α and β, let 
us first transform the conditional variance by defining

where                   , then 

We expressed lt as 

          denotes a Chi-squared variable with one degrees of freedom  with 
mean  equal to 1 and variance equal to 2. 
The auxiliary model can be written as 

where zt is a function of (α, β) and z0 = v0 = 0. The approximate 
likelihood function of (α,β) is 

with                                     and

Let us define the following recursive transformation 

Proposition 3. Let the (2q+1)  x 1 vector ct be given by

Then the expression (6) can be written as

That is, the function zt  in equation (6) can be expressed as a linear 
function of vector α. 
Proof:
      For the proof of this theorem, we use mathematical induction.
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Therefore, it is true for t = 1. 
Let us assume that it is also true for t = k.
For t=k+1,

Now from the recursive transformation, 

Therefore, it is true for t = k + 1. 

Deriving the Posterior Density of α

Now the approxiamate likelihood function of α is 

The prior distribution of α is

Following proposition 2, then the posterior density of α is given by

Deriving the Posterior Density of  β
To derive the posterior density of β, let us first express the 

function zt (α, β) in equation (6) as a linear function of vector β using 
the first-order Taylor expansion at point     , 

where                                         is  the previous draw of parameter  β    
in the M-H sampler,                                                is the first order 
derivative of Z(β) evaluate at point     , and    
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The approximate likelihood function of parameter β as, 

The prior density of β is given by 

By proposition 2, the posterior density of βis the combination of 
likelihood function and the prior density, that is, 

Deriving the Posterior Density of 
The full conditional density of       is straightforward to derive. 

Let                               are independent and identically distributed 
random variables from an Inverted Gamma density given by, 

Then the joint density of T x 1 vector       =                                    is

Then the likelihood function of        is  

Then using Bayes Theorem, we obtain the joint posterior as

which is the kernel of an Inverted Gamma Density with parameters

Deriving the Posterior Density of v. 
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With the use of these derived posterior densities of the parameters 
α, β, ω, and v in the GJ-GARCH model, it can be surmised that 
these posterior densities are essential for Bayesian inference and 
parameter estimation.

4.0 Conclusion
The primary aim of this study is to provide estimates of the 

GJR-GARCH (p, q) model with student-t error distribution using 
the Bayesian approach. For the model with student-t distribution, 
the likelihood function on ut, as shown in equation (1), provide 
difficulties in the Bayesian framework. Thus, the model is expressed 
as an equivalent to the model in equation (3), where there is an 
additional parameter ωt, assumed to be an Inverted Gamma with 
parameters v

2 and v
2 . The derivation of the posterior densities of 

the GJR-GARCH parameters α and β were derived in this paper. Also, 
the latent variable ωt is directly sampled from the full conditional 
density since the distribution of ωt is already available. 
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