
1.0 Introduction 

 

Trophic cascades occur when predators 

in a food chain or web suppress the 

abundance and/or alter traits of their prey, 

thereby releasing the next lower tropic level 

from predation (Carpenter et al., 1985). A 

Top-Down Cascade is a trophic cascade 

where the food chain or food web is 

disrupted by the removal of a top predator, 

or a third or fourth level consumer. On the 

other hand, a bottom up cascades occurs 

when  

 

when a primary producer, or primary 

consumer is removed, and there is a 

decrease of population size through the 

community (Beschta & Ripple, 2009). 

Hairston, Smith and Slobodkin (1960) 

argued that predators reduce the abundance 

of herbivores, allowing plants to flourish. 

This is often referred to as the green world 

hypothesis. The green world hypothesis is 

credited with bringing attention to the role of 
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top-down forces (e.g.predation) and indirect 

effects in shaping ecological communities. 

According to Oksanen et al., (1981),  a 

trophic level in  food chain increases the 

abundance of producers in food chains with 

odd number of trophic levels, but decreases 

the abundance of the producers in food 

chains with an even number of trophic 

levels. Additionally, he argued that the 

number of trophic levels in a food chain 

increases as the productivity of the 

ecosystem increases. This paper modifies 

Oksanen’s et al., (1981) polarity model for 

linear food chains to include biomass 

transfers from one trophic level to the next. 

Additionally, the paper also examines the 

compatibility of existing fishery management 

practices e.g. temporary fishing bans and 

establishment of marine protected areas 

(MPA) as espoused by Russ & Alcala (1996), 

with the predictions derived from the model. 

Existing models for trophic cascades 

such as those of Hairston, Smith and 

Slobodkin (1960) and Oksanen (1981) deal 

with linear food chains. Extensions in the 

case of food webs have been made using 

extensive simulation models (ECOSIM) by 

Pauly et al. (2000) but non-computer based 

mathematical models have not been fully 

developed. Mathematical models such as the 

one proposed in this study are useful for 

prediction and scenario analysis. In turn, 

prediction and scenario models are 

important bases for fishery policy. Section 2 

reviews the formulation of the classical 

cascade model of Oksanen et al., (1981) and 

extends the results to   biomass changes at 

each trophic level. Section 3 uses the model 

to analyze the periodicities of populations at 

the lower trophic levels of the food chain; 

real-life illustrative examples are also 

provided in this section. Finally, Section 4 

gives the conclusions drawn from the model 

and the analysis of real-life situations. 

 

2.0 Linear Food Chain Trophic Cascade 

Model 

 

A linear food chain representation is 

given below. The  number of functional 

trophic levels are often inferred from the 

literature available on resource and 

ecological assessment surveys conducted in 

the area. 
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Figure 1. Linear food chain model 
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Oksanen (1981) stated that: 

 

Theorem (Oksanen, 1981).  If there are 

odd number of functional trophic levels, 

then an increase (+) in the topmost level will 

induce an increase (+) in the primary 

producers ; if there are an even number of 

trophic levels, then the same phenomenon 

will induce a decrease (-) of the primary 

producers. Proof: Let k = 2n+1, neZ+ be the 

number of trophic levels. Starting from the 

topmost level we obtain a sequence of plus 

(+) and minus polarities: (+,-,+,-,…,+). Let  

p= (-1)k-1 be a polarity function. Substituting 

the value of k = 2n+1, we obtain:  p = (-1)2n 

or p = +1 polarity. The same proof works 

when k = 2n.  

 

Polarity-Energy  Food Chain  Trophic 

Cascade model 

 

We attempt to enhance the practical use 

of this theorem by considering the energy 

transfers (biomass conversions) from one 

trophic level to the next. The following 

assumptions are needed in order to develop 

the model: 

 

Assumptions: 

 

1. An organism in trophic level Tj-1 

predates on organisms in trophic level 

Tj , j =1,2,…,k 

2. If there are nj organisms in trophic 

level Tj, then the organisms in trophic 

level Tj-1 requires αj(nj) preys in order 

to reproduce. The constants αj  are 

called predation constants. 

3. Increases in the number of organisms 

at each trophic level, except for the 

topmost consumers, are determined 

by the forces of predation, 

reproduction, and natural mortality. 

The number of topmost consumers 

are determined by several other 

factors, all of which are summarized 

in the quantity ∆n1. 

4. Changes in the population sizes at 

each trophic level are determined by a 

density-dependent population growth 

model which incorporates the forces 

of birth-death. 

5.  An ecosystem is in equilibrium if n1 < 

n2 < n3 <…<nk  

 

It is convenient to discuss the density-

dependent population growth model 

assumed in (4) because this will be used in 

the development of the model. Let p(n) be 

the population at a particular trophic level 

at time n, the simplest model for p(n) is to 

assume that the population change is 

proportional to the number present: 

 

     p(n+1) – p(n) = rp(n),  

 

where r is the constant of proportionality. 

 

This equation means that p(n+1) = (1+r)

p(n) with p(0) = p0 , whose solution is easily 

found to be: p(n) = (1+r)np0. The main 

problem with this population model is that it 

assumes that the environment has infinite 

resources to support growth. A more 

realistic model is to assume that the 

environment has a finite carrying capacity 

(say, c). From: 

 

    p(n+1) – p(n) = rp(n) 

 

we curb population growth  by inputting the 

carrying capacity of the environment: 

 

p(n+1) – p(n) = rp(n)[c-p(n)].  

 

Note that there will be zero population 

growth once the population p(n) reaches the 

maximum carrying capacity (c) of the 

environment. This logistic population growth 

model reduces to: 
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1. p(n+1) = (1+rc)p(n) 
 

2. a(n)= p(n)                        

 

to obtain the final model: 

 

      3.  a (n +1) = ρα(n) [1– α(n)]   
 

where: ρ = 1 + rc.   

 

Since for each n, p(n) ≤ c, it follows that 

(2) is a normalized population growth model, 

that is,  0  ≤  a(n) ≤ 1. The initial population 

( i.e. population at time of first observation) 

is assumed known, a(0) = a0. Likewise, we 

assume that r > 0, so that the  ρ > 1. Model 

(2) exhibits many different types of behavior 

of population growths: (a) for 0 < ρ < 2.8, 

steady state; (b) for 2.8 < ρ ≤  3.3, two-value 

cycle; (c) for 3.3 < ρ ≤ 3.55, four-value cycle; 

(d) for ρ≥ 3.829, chaos. We illustrate the 

logistic model fit for the Philippine 

population data as shown in Table 1.  

Source: NSO, 2013 
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  Table 1. Philippine population data from year 1903-2010  

Year  Population ± % p.a 

1903 7635426 — 

1918 10314310 2.03 

1939 16000303 2.11 

1948 19234182 2.07 

1960 27087685 2.89 

1970 36684486 3.08 

1975 42070660 2.78 

1980 48098460 2.71 

1990 60703206 2.35 

1995 68616536 2.48 

2000 76498735 2.20 

2007 88574614 2.12 

2010 92337852 1.40 

The value of r is computed from p(n+1) – 

p(n) = rp(n) by first dividing the difference p

(n+1) – p(n) by the time difference between 

censuses. This gives an approximate value 

for the ―annual‖ population difference. The 

result is then divided by p(n) to obtain r. The 

results are tabulated value in Table 2.  

The graph of the difference (p(n+1)-p(n) 

versus p(n) is shown in figure 1. We are 

observing a two-cycle regime for the 

Philippine population and so it is possible 

that 2.8<ρ≤3.3. If we are close to ρ = 3.3, 

then given the observed value of r, we can 

infer the Philippine maximum carrying 

capacity to be: 

 

3.3 = 1 + .01934*c → c = 118,924,510 people 

 

which further means that if the 

population grows at 1,000,000 per annum, 

then the maximum carrying capacity is 

reached in 25  years (estimated Philippine 
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  Table 2. Computed estimation of r  

Population in 2012 was 94,000,000) i.e. in 

year 2039. Close to this maximum carrying 

capacity, the Philippine population will 

begin to exhibit a four-period cycle. The                    

two-period cycle observed in Figure 1 began 

after a consistent upward movement in 

Philippine population. Periods of ―booms‖ 

and ―busts‖ last for approximately 3 years 

(population stays at a certain level for 3 

years and then shifts either downward or 

A Polarity-Energy Food Chain Trophic Cascade Model: Implications to Fishery Management 

Year  Population ± % p.a diff/time r 

1903 7635426 — 0 0 

1918 10314310 2.03 178592 0.017315 

1939 16000303 2.11 270762 0.016922 

1948 19234182 2.07 359320 0.018681 

1960 27087685 2.89 654459 0.024161 

1970 36684486 3.08 959680 0.02616 

1975 42070660 2.78 1077235 0.025605 

1980 48098460 2.71 1205560 0.025064 

1990 60703206 2.35 1260475 0.020765 

1995 68616536 2.48 1582666 0.023065 

2000 76498735 2.20 1576440 0.020607 

2007 88574614 2.12 1725126 0.019477 

2010 92337852 1.40 1254413 0.013585 

                                                                             Average value of r:    r = 0.01934  

     Figure 2. Philippine relative population change 
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upward). 

The logistic growth model considers only 

the natural forces of birth and natural 

mortality in the context of a limited-resource 

environment (maximum carrying capacity).  

 

Trophic Cascade Model for Food Chains 

 

Let T = 3 trophic levels. Assume that the 

topmost consumer increased from p1(n )to p1

(n)+ δp1(n) at time n. Using Oksanen’s et al., 

(1981) result we obtain the series  of 

inequalities based on the equilibrium 

condition: 

 

p1(n )+ δp1(n) < p2 (n)– α2[p1(n )+ δp1(n)] < p3

(n) + α3[-p2 (n) + α2(p1(n )+ δp1(n))]   

 

Note that the signs (+ or -) are  determined 

based on the polarity theorem of Oksanen. 

From this condition, we obtain the necessary 

predation rates for equilibrium: 

 

1. α2 <       — 1        

 

         

2. α3 <                       — 1        

 

The denominator can be simplified to             

(1+δ) p1(n) so the predation rates for 

equilibrium become: 

 

 3.  α2 <       — 1        

 

         

         α3 <                 — 1        

 

If there is population stability in the long 

run, then it can be shown that:  

 

         pj (n) →           as n → ∞      

 

Suppose that the populations attains 

stability (1 < ρ < 2.8), then we can compute  

the asymptotic predation rates as follows: 

 

4. α2 <                                 — 1  

 

 

5.  α3 <                                — 1  

 

For illustration purposes, assume that 

ρ1 = 2, ρ2 = 2.5,  and δ = .05, a1(0) = .45,      

a2(0) = .55, and compute the asymptotic 

predation rate α2 as shown in table 3: 

 

Table 3. Asymptotic predation rate  

ρ3 - 1  

ρ3  

(1 +  δ ) ρ1  - 1 

(1 +  δ ) ρ1  

ρ1 (n) ρ2(n) α2 Iteration no.  

0.52381 0.6 0.145454258 20 

0.52381 0.6 0.145454689 21 

0.52381 0.6 0.145454473 22 

0.52381 0.6 0.145454581 23 

0.52381 0.6 0.145454527 24 

0.52381 0.6 0.145454554 25 

0.52381 0.6 0.145454541 26 

0.52381 0.6 0.145454548 27 

0.52381 0.6 0.145454544 28 

0.52381 0.6 0.145454546 29 

0.52381 0.6 0.145454545 30 
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Thus, given the population increase at 

the topmost consumer (at δ = 5%) and a 

stable population logistic growth model at 

the lower trophic level, then the predation 

rate must be below 14.5%  in order to 

maintain Oksanen’s et al., (1981) polarity 

theorem which assumes the equilibrium 

condition. This relates to the Ten-Percent 

Law in Ecology (Lindeman, 1942 as cited by 

Cook, 1977). 

Energy transfer between trophic levels is 

inefficient, such that net production at one 

trophic level is generally only 10% of the net 

production at the preceding trophic level. 

Due to non-predatory death, egestion, and 

respiration, a significant amount of energy 

is lost to the environment instead of being 

absorbed for production by consumers. The 

10%-figure approximates the fraction of 

energy available after each stage of energy 

loss in a typical ecosystem, although these 

fractions vary greatly from ecosystem to 

ecosystem and from trophic level to trophic 

level. The loss of energy by a factor of one 

half from each of the steps of non-predatory 

death, defecation, and respiration is typical 

of many living systems. Thus, the net 

production at one trophic level is or 

approximately ten percent that of the 

trophic level before it. This implies that if 

the predation rate is maintained at the 10% 

level, then the equilibrium condition used in 

Oksanen’s (1981) theorem is satisfied. 

 

Increase in Top Consumers (More Fishers 

and More Efficient Fishing Gears) 

 

The optimal predation rates given an 

increase in the number of top level 

consumers  depends on the value of δ which 

may not be fixed for all time n. It is logical, 

in fact, to assume that this increases as a 

function of time i.e. more fishers, more 

efficient fishing gears, because of human 

population pressure. We ask for the limit of 

this increase in δ beyond which the 

equilibrium condition of Oksanen et al., 

(1981) will be violated i.e. the limit in the 

increase of human predation. Setting (4) 

equal to zero yields: 

 

   6. δ =  

 

3.0  Trophic Cascade Model for Food 

Chain With Periodic Population Cycles 

 

The logistic population growth model 

used in the previous section displays a wide 

array of long-term behavior. We discuss 

these dynamic behavior by considering the 

logistic map: 

 

         f(x) = rx (1-x), r > 0  

 

A point x is said to be a fixed point of 

the map if x = f(x). If the growth rate r is 

between 0 and 1, then the only fixed point is 

x = 0, in which case, the population 

ultimately becomes extinct. If the growth 

rate is between 1 and 3, the logistic map has 

two fixed points, namely, x = 0 (which is a 

repelling fixed point) and x = (r-1)/r (which 

is an attracting fixed point). The case 

considered in the previous section was of 

this type where the populations ultimately 

become stable. Under this regime, the 

population  increases from x = 0 to its stable 

fixed point (r-1)/r. 

The Philippine population data reveals 

yet another possibility where r > 3. In this 

case, both the original fixed points are 

repelling while the   other two are attracting 

periodic points.  

 

Solving ƒ2(x) = x gives us four roots   

  x = 0  

x = 1-1/r,   

 

  x =  
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ρ2 - ρ1 

ρ2 

r + 1 ±√(r-3) (r+1)  

2r 
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The first two are clearly the repelling 

fixed points. The second two are two-periodic               

points.   

When x0 =                           , (f2)’(x0) = 4 + 

2r - r2. Therefore, the 2-cycle is attracting for 

4 + 2r - r2 < 1  i.e. 3 < r < 1 + √6 ≈ 3.449...  A 

graphical illustration when r = 3.1, a0 = .45 

is shown below: 

 

 

When the growth parameter r exceeds 

3.449, the population undergoes a series of 

bifurcations (4-period, 8-period, 2n-period) 

resulting in ultimate chaos. These 

population changes hold true at all trophic 

levels in a food chain and can be used as a 

basis for fishery policies. 

 

Real Illustrative Example 1. The study 

of Ginanjar (2006) suggests that the pelagic 

fish Sardinella lemuru has a growth 

parameter not exceeding r = 2.81 (based on 

the ratio of egg production per female 

(max:=22) and fecundity (7.85),  hence, 

estimated r = 22/7.85 = 2.803). Spawning 

period was observed to be between the 

months of September and October and that 

no evidence was found that S. lemuru spawn 

more than one time a year. These 

information means that that population of 

this pelagic fish species increases (as a 

function of time n) until it reaches a stable 

population if left on its own based on the 

logistic growth hypothesis. However,              

over-predation by the top level consumer 

(over-fishing) can disrupt this approach to 

stability ( i.e. δ > 14.5%) or if fish larvae are 

caught by very fine gill nets (i.e. reduction in 

the value of r). Fishery closure during 

spawning period (September to October)  up 

to March or April each year ensures 

sustainable catch for this fish species. In 

August, 2013, such a ban for fishing 

sardines in the Zamboanga Peninsula area 

was, in fact, announced.  

 

Real Illustrative Example 2. Jensen 

(1984) observed the various behaviors of fish 

populations, specifically looking into the 

observed yield of lake herring (Coregonus 

   Figure 4. Two-cycle population growth with attracting fixed points: x = .76 and x = .56 
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artedii) from the upper Great Lakes. 

Conventional surplus production models 

assume that fisheries do not impact the 

population's capacity to increase, but 

changes in age structure or a decrease in 

age-specific fecundity resulting from fishing 

can decrease the coefficient of increase. A 

surplus production model is developed in 

which fishing reduces the capacity of a 

population to increase; the model is applied 

to describe the fluctuations observed in yield 

of lake herring (Coregonus artedii) from the 

upper Great Lakes. The fisheries of the 

Great Lakes were decimated by the 

combined effects of heavy fishing and 

a changing environment. For some species, 

yield increased to high levels and then the 

fisheries collapsed; for other species, yield 

and effort fluctuated greatly. If a logistic 

growth model were used in Jensen’s study 

(1984), the high fluctuations in both yield 

and effort could be explained by a growth 

rate r > 3.5 i.e. decrease in fecundity 

(observed by Jensen, 1984), which appears 

in the denominator, increases r, thus, 

explaining the chaotic behavior of yields of 

lake herring. 

 

4.0 Conclusion 

 

The analyses performed  serve to 

illustrate the usefulness of modelling fish 

population dynamics through the logistic 

growth model as it accommodates many 

possibilities for the fish population growth. 

For instance, conventional surplus 

production models indicate that destruction 

of fish populations by overfishing is difficult, 

if not impossible, but catastrophic declines in 

abundance of exploited populations are 

common. Surplus production models also do 

not predict large continuing fluctuations in 

yield, but large fluctuations in yield are 

common. Likewise, the logistic growth model 

contains the parameter r which can be easily 

estimated through gonadal somatic index 

(Ginanjar, 2006). The effects of top predation 

(over-fishing) on the lower trophic levels on 

the value of r can then be more clearly 

gleaned. 
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