
Abstract  

 

This paper is a kind of investigatory project that can be modeled by students in 

the basic education doing mathematical research.  The results established here may 

be incorporated in the instructional materials for teaching function and sequence.  The 

number o(n,k) for positive integers n and k from the pyramid of odd numbers φn is 

introduced and some Hogatt-Hansell-type identities are established and discussed. 
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1.0  Introduction 

 

Over the years, Pascal’s triangle is one of 

the well-known pyramids of numbers. It is 

an efficient technique in generating the 

binomial coefficients          and some of its 

interesting properties (Koshy, 2007).  

One of which is the Hogatt-Hansel 

identity mathematically expressed as:  

 

 =  

 

which is obtained from the alternate vertices 

of a regular hexagon formed from the 

binomial coefficients in any three adjacent 

rows in the Pascal’s triangle (Hoggatt & 

Hansell, 1971).  This identity also implies 

that the product of all the numbers at the 

vertices of the hexagon is a square.  

Subsequent works have generalized this 

triangular array to a tableau and called it as 

generalized hidden hexagon squares 

(Stanton & Cowan, 1970; Gupta, 1974).  

They established that the product of the six 

binomial coefficients spaced around      is 

a perfect integer. Thus, this present will deal 

with some Hogatt-Hansell-type identities 

from the pyramid of odd numbers φn 

generated by the number o(n,k) for positive 

integers n and k. 

In the same year, Hogatt and Bicknell 

(1974) published some properties of 

triangular  

 

triangular numbers which exposed 

Fibonacci’s triangle of odd numbers. It 

features the arithmetic triangle of odd 

numbers in which the nth  row has n  entries, 

the center element is n2  for even n and the 

row sum is n.  They confirmed that every 

odd number is the difference of two 

consecutive squares and that the difference 

of the squares of two consecutive triangular 

numbers is a perfect cube. Moreover, they 

have established the generating function of 

the cube number generated from the 

triangle. Parallel to this work, Conway & 

Guy (1996) found out that the triangle 

numbers Tn can be related to the square 

numbers by: (2n + 1)2 = 8Tn + 1 = T n-1 + 6Tn + Tn+1 

and established the generating functions of 

Tn.  

Motivated by the above-cited works, this 

paper will exploit the pyramid of odd 

numbers and discuss the explicit form of its 

elements to establish some Hogatt-Hansell-

type identities. The visual geometric 

patterns of the number o(n,k) on the φn is 

envisioned to extend its applications on 

functions, sequences, and in the field of 

engineering. Moreover, the concepts can be 

integrated in the instructional materials for 

teaching mathematics; thus, helping the 

students develop higher order thinking 
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skills. 

 

2.0  Results & Discussions 

 

Consider the sequence of odd numbers 

Xn = {1, 3, 5, 7, 9, …, 2n-1}. The elements of Xn 

for n = 7 are arranged in a triangular array 

as shown in fig. 1.  

Let φn be the pyramid of odd numbers 

with n rows and k columns. Every element 

in the φn  is denoted by o(n,k), which is 

explicitly defined by o(n,k)=n(n–1)+2k –1 for n ≥ 

k ≥ 1. Observe first few elements of φn in fig. 1 

as follow: o(1,1) = 1, o(3,2) = 3 (3-1) + 2 (2) -1 = 9 

and o(5,3) = 5(4) + 2(3) - 1 = 25. Moreover,           

o(n,1) = n (n–1) + 1 and o(n,n) = o(k,k), for n = k. 

Note that o(n,k) is always an odd number for 

every positive integers n and k. Hence, the kth 

element in the nth row of φn  is given as o(n,k) 

= n (n–1) + 2k –1. For n = k, o(n,n) = o(k,k).  Note 

further that in fig. 1, it shows that for n=k, 

the last element is o(k,k). Hence, o(n,n)  or o

(k,k) denotes the last element in the kth  row of 

φn. This remark is essential in establishing 

some properties of φn.  

In the subsequent theorems, the 

numbers o(n,k) will be interpreted in 

different forms of equalities using square 

and pentagon sub-arrays of  φn. Number 

equality is the highlight of this identity for 

all square sub-arrays of four adjacent 

elements in φn  for n ≥ 3. The following 

figures will help us to better understand the 

identities with sub-arrays of φn. From fig. 2, 

we can form the first square sub-array in 

the 2nd and 3rd rows of φ3.  Note that the 

sums of elements in the diagonals are 

equal; that is 3+9 = 5+7.  On the other hand, 

we can form two square sub-arrays in the 

3rd and 4th rows of φ4  in addition to the 

square sub-array in the 2nd and 3rd rows of 

φ4. Note further that those diagonals of 

         Figure 1. The φ7  and its elements o(n,k)  

                    Figure 2. Square sub-array in φn  for n = 3, 4    
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each square show equal sums; that is, 

7+15=9+13 for the left-side array and 

9+17=11+15 for the right-side array.  Taking 

an arbitrary n and k in the φn, as shown in 

fig. 3, we can generalize this relationship as 

follows:  o(n,k)+o(n+1,k+1)= o(n+1,k) + o(n,k+1). 

Hence, we come up with the following 

theorem.  

 

Theorem 1. The alternate sums of four 

adjacent elements in φn  are equal. That is, 

for  n ≥ 3, 

o(n,k)+o(n+1,k+1)=o(n+1,k) + o(n,k+1). 

Proof:   

 

 o(n,k)+o(n+1,k+1) = [n(n-1)+2k-1]+[(n+1)(n+1-1)+2(k+1)-1] 

                                 = n(n-1)+2k-1+(n+1)n+2k+2-1 

            = [n(n-1)+2k-1]+[(n+1)n+2k+1] 

            = [(n+1)n+2k-1]+[n(n-1)+2k+1]  

            = [(n+1)[(n+1)-1] + 2k-1] + [n(n-1)+2(k+1)-1] 

            = o(n+1,k) + o(n,k+1)  

 

Thus,  

      

        o(n,k)+o(n+1,k+1) = o(n+1,k) + o(n,k+1) 

 

Adding the distance of the square            

sub-arrays will generate another interesting 

result. Let us observe fig. 4 on how the 

distance of the elements vary with adjacent 

elements in forming a square sub-array.   

Notice that if you add the diagonal 

elements of fig.4(a) you will have 7+15+25 = 

11+15+21. Now, if you expand the array by 

adding two rows (down) and column (to the 

right) as shown in Figure 4(b), we have the 

                                  Figure 3. Generalized form of square sub-array   
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 Figure 4. Sub-arrays with length m = 2, 3 in φn 
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m-1 

j = 0 

o(n+j,k+j)  =  

m-1 

j = 1 

o(n+j - 1,k +m - j) 

o(n+j-1,k+m-j) = [(n+j-1)(n+j-2)+2(k+m-j)-1] 

o(n+j-1,k+m-j) = (n+j-1)(n+j-2)+ 

(n+j)(n+j-1)+ 

[2(k+m-j)-1] 

o(n+j-1,k+m-j) = [2(k+j)-1] 

o(n+j-1,k+m-j) = [(n+j)(n+j-1)+2(k+j)-1] 

o(n+j-1,k+m-j) = o(n+j, k+j).  
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    Figure 5. Horizontal Orientation of Pentagon Sub-arrays of φn for m = 1, 2 

the sum of diagonal elements such that 

13+23+33+43 = 112 = 19+25+31+37.  Thus, 

Figure 4(b) is the consequence if the length 

of the square sub-arrays is increased. 

Hence, the next theorem generalizes this 

observation. 

 

Theorem 2. Let δm be a square of                  

sub-array of φn  with m rows m ≤ n. Then the 

sums of the elements in the diagonal            

sub-array of δm are equal. That is, if                        

o(1,j )  δm, then, 

  

          Σ          Σ 
 

where k ≤ n - m + 1 and m ≤ n–2.  

 

Proof:   

For positive integers m, k and n, where k 

≤ n - m and m ≤ n–2 we have:  

 

  

 

Σ          Σ          

          Σ      Σ 

          Σ             Σ 

        Σ 

        Σ 
 

Pascal’s triangle exhibited some 

intriguing identities on the equality of the 

product of alternate vertices in any hexagon 

formed within its adjacent rows and proved 

that the product of six vertices is a square 

(Koshy, 2007) and even generalized by 

Gupta (1974).  

Similarly, φn contains an identity on six 

elements equally spaced around o(n,k) 

whose sums of three alternate elements in 

horizontally-oriented pentagon are equal 

considering the m length of space around o

(n,k). For m = 1, the sums of the alternate 

elements around o(n,k) of φn are equal or 

form two consecutive odd positive integers.  

These identities are illustrated in fig. 5.  
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(a) (b) 

Observe that for m = 1, we have 

3+11+13 = 5+7+15 (as shown in Figure 5a) 

and 11+13+25 = 9+17+23 (as shown in 

Figure 5b).  For m = 2, alternate sums yield 

the following: 7+29+43 = 11+21+47 (as 

shown in Figure 5c) and 29+43+81 = 

25+51+77 (as shown in Figure 5d).  Thus, 

illustration show that adding the 3 alternate 

elements in a pentagon of opposite form in 

jn  with different length will always give equal 

sum.  

However, this type of sub-array cannot 

be formed for n ≤ 3. The following theorem 

embodies the  results illustrated in the 

preceding discussion. 
 

Theorem 3. For horizontally oriented 

pentagon sub-array of φn, the sums of 

alternate elements equally spaced around              

o(n,k) by  length m are equal.   That is,  

 

    o(n-m,k-m)+o(n,k+m)+o(n+m,k-m) 

                = o(n,k-m)+o(n-m, k)+o(n+m,k)  

 

where  n ≥ 3 and n ≥ 4.  
 

Proof. The LHS of (3) becomes 

  LHS = o(n-m)(n-m-1)+2(k-m)-1+n(n-1)+2(k+m)- 

                1+(n+m)(n+m-1)+2(k-m)-1 

          = (n-m)(n-m-1)+2k-2m-1+n(n-1)+2k+2m-1+ 

                (n+m)(n+m-1)+2(k-m)-1 

             = (n-m)(n-m-1)+2k-1+n(n-1)+2k-1+(n+m) 

                (n+m-1)+2(k-m)-1 

             =n(n-1)+2(k-m)-1+(n-m)(n-m-1)+2k-1+n+m) 

                (n+m-1)+2k-1 

             = o(n,k-m)+o(n-m,k)+o(n+m,k) = (RHS) 

 

Taking also into consideration a 

vertically-oriented pentagon sub-array of φn  

for m = 1 shown in fig. 6, again, the 

alternate sums provide identity of φn  

elements around o(n,k). Note that in fig. 6(a) 

two consecutive odd numbers are generated 

from the sums of alternate elements in the 

pentagon sub-array. That is, 5+13+17 = 35 

and 7+11+15 = 33. Similarly, in fig. 6(b) 

gives the sums 7+23+11=41 and 9+13+17 = 

39. These results show alternate sums of 

six elements around o(n,k) of φn, in a 

pentagon sub-arrays, forming two 

consecutive odd positive integers. The 

following theorem formally stated the 

aforementioned results. 

 

Theorem 4. The alternate sums of the six 

elements around o(n,k) of φn in a vertically-

oriented pentagon form two consecutive odd 

positive integers. 

 

Figure 6. Vertical orientation of pentagon sub-arrays for m = 1, 2 
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Proof.  Let O1 and O2 be the alternate sums 

of the six elements around o(n,k) of φn, 

where 

     O1 = o(n,k-1)+o(n,k+1)+o(n+1,k)  

and     

     O2 = o(n-1,k)+o(n+1,k-1)+o(n+1,k+1). 

then,     

     O1 = n(n-1)+2(k-1)-1+n(n-1)+2(k+1)-1+n(n+1)+2k-1 

             =  2n(n-1)+n(n+1)+6k-3 

           =  n(3n-1)+3(2k)-3 

 

Note that n(3n-1) is even integer for    

and 3(2k) - 3 is odd for every positive 

integer k. Hence, n (3n-1) + 3(2k) - 3 odd. 

Thus, O1 is odd. Similarly,  

 

O2 =(n-1)(n-2)+2k-1+n(n+1)+2(k-1)-1+n(n+1)+2(k+1)-1 

      =  2n(n+1)+(n-1)(n-2)+6k-3 

      =  n(3n-1)+3(2k)-1 

 

Observe that n(3n-1) is even, for any 

positive n and 3(2k)-1 is odd for any positive 

integer k. Thus, n(3n-1) + 3(2k)-1 is odd. 

Hence, O2 is odd. Now, 

 

  O2 = n(3n-1) + 3(2k) - 1 

        = [n(3n-1) + 3(2k) - 3]+2 

        = O1 + 2 

 

Therefore, O1 and O2 are consecutive 

positive odd integers.  

 

 

3.0  Recommendations for Future       

Studies  

 

This paper exploited the sum of odd 

numbers equally spaced around o(n,k) in a 

generalized square sub-array, and 

horizontally and vertically-oriented 

pentagon sub-array in exposing Hogatt-

Hansell-type identities.  More identities of 

this type and extensions of properties of 

odd numbers may be established if the 

product will be investigated as with the 

work of Gupta (1974).  On the other hand, 

other special numbers such as stirling-type 

numbers may be ventured for possible 

extensions parallel to that of the odd 

numbers in the pyramid or triangle.  

Finally, some combinatorial interpretations 

such as the 0-1 tableaux may be explored 

to establish more interesting combinatorial 

properties of o(n,k) for refinement and 

greater applicability of this number 

sequence. 
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