
  

 

ON THE DISTRIBUTION OF THE MAXIMUM OF n 
INDEPENDENT NORMAL RANDOM VARIABLES: 
IID AND INID CASES 

ABSTRACT 

 

The paper deals with  the  distribution of the maximum of n                   

independent normal random variables and hints on  some of its                    

applications in the electricity power industry in the area of peak load           

estimation and in genetic selection for animal breeding. The paper                

provides for simple approximations to the mean of the largest order             

statistics both in the iid and non-identically distributed cases. Likewise, 

while the large sample results for the iid case have been treated in the 

past, we focused on the relatively unexplored non-identical but                         

independent case. Large sample asymptotic results for extreme values of 

normal random variables are often used in reliability theory and also 

used in the analysis of extreme weather changes in relation to climate 

change. Results show that the large sample distribution for                             

non-identically distributed case still obeys the Type I Gumbel distribution 

with shifted parameters through an application of Frechet’s stability                      

postulate.  

Keywords: largest order statistic, multivariate normal, error function , peak load,     

                   Rayleigh Distribution, Gumbel Distribution 

1.0 Introduction 
 

The hourly load demand for electricity 

as noted by an Electric Cooperative 

roughly follows a normal distribution so 

that if Xj represents the demand at hour 

j, then Xj ~ N (μj,σj2). We seek the               

probability that the peak demand occurs 

at time t, that is, we want to evaluate: 
 

  1…. Pr (Xt > Y) ,  

where Y is the maximum of the X’s. Such 

a practical problem occurs almost daily 

in most industries the country that the 

need to develop analytic methods to 

tackle it is almost imperative. In the case 

that there are only two (2) potential peak 

hours,  X1  and  X2,  then  the probability 

  

that X1  is greater than X2 can be easily 

calculated. In fact, this is equivalent to 

finding the  probability, Pr (X1 – X2 > 0) 

which can be obtained from the                  

distribution N(μ1-μ2, σ12+σ22) by a table 

look up or actual numerical integration. 

When there are n competing hours, then 

one must resolve Equation (1) which is 

the focus of the present paper. 

The problem of finding the                        

distribution of Y is, by itself, nothing 

new. In fact, the classical approach 

would be to consider: 

 

where Φi (.) is the cumulative distribution 
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function of a normal distribution with 

mean μi and variance σi2. The probability 

problem given by (1) reduces to: 
 
  3... 
 

Equation (3) demands a large amount of 

integration and we shall not approach 

the problem this way. A related problem 

arises out of this basic problem of          

determining the probability distribution 

of the maximum of n independent         

normal random variables. Consider the 

daily peak loads  noted Y1,Y2,...,Yn for a 

period n. The distribution of each Yi is 

given by (2) and will be more explicitly 

stated in the body of this paper. We wish 

to know the joint distribution of these 

peak loads f(Y1,Y2,..,Yn). Knowledge of 

the joint distribution f(.) allows us to ask 

relevant questions such as, what is the 

probability that the daily peak loads do 

not exceed a capacity limit L? That is, 

we seek answer to the probability       

question: 
 
    4…. Pγ (Y1 ≤ L, Y2 ≤ L,...Yn ≤ L)? 
 

With the passage of the Electricity 

Power Industry Reform Act (1998), the 

issues of generation capacity and             

demand requirements, average and peak 

load requirements and others had been 

highlighted because of the unbundling of 

the electricity charges passed on to the 

consumers. For instance, distribution 

utilities have to contend with the issue of 

determining how much electricity to       

procure from power generation              

companies considering both the average 

demand and the peak load demand in 

their service areas. A miscalculation on 

the part of the distribution utilities could 

mean millions in terms of losses.  

Hill (2010) considered a similar         

problem in relation to the calculation of 

the probability that a runner wins in an 

n-player running match. Specifically, he 

obtained the probability distribution of 

the minimum of n independent normal 

random variable. He found that the         

probability distribution of  Y, the minimum of 

n independent normal random variables 

obeys a multivariate normal distribution 

with mean vector μ and covariance         

matrix S where: 

 
 5... μ = (μ1, μ2,...,μn)’ and S = diag(σi2) 

 
 

is a diagonal matric with σi2 on the ith       

diagonal and zeroes elsewhere, or  

 

     6…  
 

The application of Hill’s (2010) results 

in more practical areas such as the        

power industry sector is obvious. One 

might be interested in the downtime  

power load (instead of the peak power 

load) for purposes of planning and          

forecasting of a distribution utility’s daily 

demand requirements. 

Finally, a related problem that might 

be of interest is the probability             

distribution of the maximum of the       

maxima of random variables. Let   

     S1 = {x11, x12,...,x1n},  

     S2  = {x21,x22,...,x2n},...,  

     Sp = {x1p,x2p,...,xpn}  

be subsets of independent random           

variables of equal length n. Let : 
 
    7…  

  

 

2.0 Mathematical Derivation of the 

Distribution of the Maxima of n          

Normal Random Variables  

 

We are  interested in evaluating Pγ (X0 
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> Y) where Y = max {Xj} j = 1,2,..,n with 

the same assumptions as Hill’s (2010) 

paper. Following his derivation, we first 

obtain the probability distribution of Y:  

Hence, the probability distribution of 

the maximum of n independent normal 

random variables is precisely a            

multivariate normal distribution where: 

Let us write down the density          

function of X0 g (x) as: 

 

 

 

The desired probability   can now be 

obtained using (8): 

However, the integral is precisely the 

integral of an (n+1)-variate normal       

distribution or the n-variate normal     

distribution before plus one additional 

variable. That is, h(t) is: 

 

10… 

 

where S is an (n+1) x (n+1) strictly       

diagonal  positive definite matrix whose  

diagonal elements are σi2, i= 0,1,...,n and 

μ= (μ0, μ1,..., μn). The computation of the 

integral , however, is not a trivial task 

and we shall return to this issue later 

when we perform our simulation               

exercises. 

 

Application 1: Given the hourly data 

for electricity demand in a given locality, 

we can ask the question of finding the 

probability that the peak demand is less 

than 50MW. If X1,X2,..,X24 are the hourly 

electricity demands, and Y = max {Xi}, 

then we can compute P(Y ≤ 50) using 

Equation (8). Of course, we need the 

hourly data (24-hour data) over at least 

one month to establish the distribution 

of the X’s. 

 

Application 2: In genetics, Rawlings 

(1976), Hill(1976,1977) and Tong(1990), 

considered the problem of selecting the 

best animal out of n animals for breeding 

purposes. Let X1; . . . ;Xn be the              

measurements of a certain biological or 

physical characteristic of the n animals, 

such as the body weights or back fats of 

the pigs. The animal with score Y = X(n) is 

to be selected. If X1; . . . ;Xn are                  

independent with mean μ, then the       

common mean of the observations of       

offspring of the selected animal with 

score X(n) is E(X(n)), and therefore the            

expected gain in one generation is E(X(n)) 

- μ. The animals must come from             

different stocks because the assumption 

of independence will be violated. If Y = 

max {Xi} we can ask the same probability 

question as before. 
 

Independent and Identically (IID)        

Normal Random Variables Case 

 

Often, our interest rests mainly on 

the mean of the maximum of n random 
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variables. Even in the case where the 

random variables are normally                 

distributed, the numerical integration 

required to determine the expected value 

of the maximum is tedious. It is possible 

to develop heuristic approximations to 

the expected value of the maximum of n 

iid normal random variables. Let X(n) = 

max {Xi}. Clearly X(n) > E(Xi) = μ for all i. 

Suppose that: 

 

11...X(n) = μ  + ε where   ε ~ F(ε) , and 

      F(ε) = 1 – exp(-    ), 0 <  ε < ∞ 

 

The distribution f (.) is called a      

Rayleigh Distribution used in extreme 

value analysis and is a special case of 

the Weibull distribution with α =   b and 

β=2. Model 11 says that the maximum 

order statistic X(n) exceeds the mean of 

the component normal random variables 

by a random amount ε whose expected 

value is: 

 

12…. E(ε) =  2½b Γ(1+½) 

 

The expected value of X(n) can be          

obtained from (11): 

 

13…. E(X(n)) = μ + E(ε). 

 

In other words, if we can model the 

extreme value statistic X(n) as a sum of 

the common mean plus a Rayleigh       

distributed random error, then it is     

possible to estimate its mean as well by 

(13).  

Procedurally, if x1,x2,..,xn are iid N

(μ,σ2) are random samples, then we first 

take the maximum  likelihood estimators 

of μ and σ2 corrected for bias: 

     

       14...   x  = n-1∑xi    

 s2 = (n-1)-1∑ (xi – x)2 
 

Put εi = │xi – x │  for i = 1, 2,...,n, 

which we now assume obeys the        

Rayleigh distribution with mean equal to 

(13).  The maximum likelihood estimator 

of the parameter b of the Rayleigh              

distribution is given by:  

       15...b =  

Our estimate for  E(X(n)) = μ(n) is thus: 

or heuristically,     =   + 3 sd (x) which is 

intuitively appealing. We verify this error 

model by using simulation in the next 

section. 

 

Independent But Not Identically           

Distributed Normal Random Variable 

 

The situation when the random              

variables Xi are not identically                    

distributed but independent normal     

random variables with μi = E(Xi) and σi2 = 

var (Xi) is more complicated but also 

more useful in practice. In the                        

succeeding discussions, we agree on the 

following notation: 

 

    =         = mean of the means  

 μ(n) = max {μ1, μ2, ..., μn} = maximum  

          of the means  

 X(n) = max. {X1,X2,...,Xn} = maximum                

         order statistic Dn = μ(n) -    .  

 

We create a data model similar to 

(11). We start with the obvious                             

inequality:  

17…μ(n) -    ≥  0 with equality only if  

μi = μ for all i. To see this, consider: 
 
      18...μ(n) =            >           =   
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Since μ(n) > μi for all i. It follows that 

Dn ≥ 0. We now claim that : 

  19...X(n) =    + εi where  

   εi = │xi -      │, i = 1,2,..,n. and : εi ~ 

F(ε) is a Rayleigh distribution function. 

In practice, the underlying means are 

unknown and so we replace (19) by its 

sample counterpart: 

  20….  X(n) =    + │xi -       │. 

The second term on the right is       

assumed to obey a Rayleigh distribution 

with mean given by Equation (12).      

However, the MLE of b is now: 

 

   21….    =                       . 

Equation (21) is no longer                            

approximately equal to 2½sd(x). We can 

argue heuristically to obtain a sense of 

the magnitude of (21) in relation to the 

case when the xi’s are properly centered 

around their means. 

Let Y = (x1-μ1)2 + (x2 – μ2)2 +...+ (xn – 

μn)2, and Z =(x1-μ(n))2 + (x2 – μ(n))2 +...+ (xn 

– μ(n))2.  If we take expectations: 

 

  22….E(Y) = σ2 + σ2 + ... + σ2  = nσ2, 

 

assuming equal variances. Next                            

consider one term of the quantity Z:  

since the  second  term  above is zero 

and 
                   θ12 = (μi – μ(n))2 

 

It follows that E(Y) = nσ2 ≤ E(Z) = nσ2 

+          . Equation (21) is greater than 

 Equation (15), and so we expect a 

greater additive factor to expected value 

of the means than in the iid case. In fact, 

the inequality provides us an insight on 

the magnitude of the difference since: 

24….  E(Z) – E(Y) =          . 

There is a rough approximation on 

the value of E(X(n)) provided by Hamza

(2008) and we borrow his theorem below: 

Theorem (Hamza). Let X1,X2,...,Xn be 

independent random variables with Mi = 

E(Xi), then: 

      ≤ E(X(n)) ≤     +     M(n). 
 

where: 

               = average of the Mi’s 

  M(n) = max {Mi}. 

 
In relation to the present problem, it 

may often be more useful for the electric 

distribution utility to have an idea of the 

magnitude of the peak demand (on the 

average). Thus, Hamza(s) (2008) theorem 

will be most useful in providing such  

information. Similarly, in the genetic              

selection problem of application 2, we 

can assume that the means differ across 

the animals and that we chose the                   

maximum observed Xi as the animal to 

be used for breeding. Then, again,                 

Hamza’s (2008) results will apply. Note 

that the Theorem does not require that 

the random variables be normal. It                

applies to all independent random                  

variables, and so, is quite general.        

Meanwhile for sufficiently large n, we can 

consider some asymptotic results to   

simplify the calculations. 

 

Asymptotic Results for the IID Case 

 
We wish to show that for large n, the 

asymptotic  distribution of the largest 

order stat ist ic  X(n) is a Gumbel Type I  
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distribution. According to the Fisher-

Tippet–Gnedenko theorem, the maximum 

of a sample of iid random variables after 

proper “whitening” converges in                  

distribution to one of three possible              

distributions, the Gumbel distribution, 

the Fréchet distribution, or the Weibull 

distribution. The role of extremal types 

theorem for maxima is similar to that of 

central limit theorem for averages. 

Let Y = max {Xi} of a sequence of            

independent and identically distributed 

standard normal random variables Xi. 

Let Φ(x) denote the cumulative                        

distribution function of a standard               

normal random variable x. The                            

cumulative distribution function of the 

maximum order statistic Y is: 

      
 25...Fn(y) = [Φ(y)]n , -∞ < y < ∞ as before. 
 

Clearly, lim Fn(y) = 1 or 0 depending 

on whether Φ(y) = 1 or 0 as n→∞.  In             

order to obtain a non-degenerate limiting 

distribution, it is necessary to transform 

Y by applying a linear transformation 

with coefficients which depend on the 

sample size n but not on y. This process 

is similar to the standardization process 

in statistics. Let Yn’ = anY + bn where an 

and bn are coefficients depending on n 

but not on y. Suppose first that the                

limiting distribution  G(y) exists. That is: 

lim Fn(y) = G(y) exists for properly                    

transformed Y.  

If we increase the sample size to nN 

where N > 0, then the largest of the nN 

values X1,X2,...,XnN is also equal to the 

largest of the values Xj-1(n+1), Xj-1(n+2),…...,Xjn, for 

j=1,2,...,N. It follows that the limiting   

distribution G(.) obeys: 

 

26… [G(y)]N = G(aN y + bN), Frechet (1927) 

 

Equation (26) is cal led the  stability  

postulate. Now, take aN = 1, Equation 

(26) now becomes: 

 

   27… [G(y)]N = G(y + bN). 

 

We iterate Equation (27) for larger 

samples NM:  

 

 

We infer that : bNM = bN + bM . This 

equation tells that bN must be some type 

of logarithmic function. In particular, bN 

= σ log N where σ is a constant. We plug 

this value into Equation (27) to get: 

 

     29… [G(y)]N = G(y + σ log N ). 

 

Take the logarithm of both sides of 

(29) to get :  

 

     N{- log G(y)} = - log G(y + σN)  

 

where the negative sign emerges from 

the fact that G(y) ≤ 1. We take the                  

logarithm once again (sometimes called 

the law of iterated logarithms): 

 

 

 

Let h(y) =  log {- log G(y)}. Equation 

(30) becomes: 

Put σ (  + log N) = 0 (or find h(0) on 

the right hand side. This means that    = 

-log N. Substituting back to Equation 

(31), we obtain: 

 

32...h(y)=h(0)-  , since h(y) decreases 

as y increases. 

Thus, -logG(y) = exp(h(y)) = exp (h(0)-

  ) = exp(-(     ). Put μ = σh(0) and we 

have: 

On the Distribution of the Maximum of n Independent Normal Random Variables  

106     SDSSU Multidisciplinary Research Journal  Vol. 1 No. 2, 2013      



  

 

It follows that: 
 
 

The asymptotic mean and variance of 

Y can now be obtained from G(y).  The 

mean, variance, skewness and kurtosis 

are given in the references. 

 

 

 

Asymptotic Results for the Independent 

but Not Identically Distributed Case 

(INID) 

Let X1,X2,...,Xn be independent       

normal random variables with means E

(Xi) = μi and variances given by var(Xi) = 

σi2. As before, we let Y = max {Xi}. The                  

distribution of Y is given by: 

 
     35… Fn*(y) = Πi Fi (y), i = 1, 2,...,n. 

 

There are two ways in which we can 

think of the asymptotics or large sample 

scenario. The first is to increase n       

without bound, in which case we have a 

sequence of means {μi} and variances 

{σi2}, i = 1,2,3,.... The second way is to fix 

the number n of means and variances 

and then to increase the number of         

observations M for each component         

distribution function i.e take a random 

sample of size M from each of the n         

component distributions and increase 

this without bound. In practice, it is the 

second interpretation that appears to be 

reasonable and implementable. Hence, 

our asymptotic analysis will follow the 

second interpretation.  

To this end, let: 

          =        = arithmetic average  of 

the means which is  non-stochastic,                 

               =      = arithmetic average of 

the variances also non-stochastic    

               =             = the square root of 

the arithmetic average of the variances.              

We consider: 
 

        Fn*(      ) =             , i = 1 2,...,n. 
 

If samples of size M were obtained 

from each distribution function, then: 

 

36….Fn*(    )=               ,  where:  

     i = 1 2,...,n., M = 1,2,3,...→∞ 

 

Assume, as before, that the limiting 

distribution of (36) exists and is G(.): 

 

37…                → G(     ) as M →∞. 

 

Applying the same stability postulate 

as before, we have that: 

 

 38… G(     )M = G(     + bM) 

 

For which we conclude that bM = θ log 

M. Hence: 

Equation (39) implies that if h(   ) = 

log (-log(G(     )), then: 

 

 

 

It follows that:  

 
 

 

which we recognize as a Type I Gumbel 

distribution with α =   +   h(0) and β=     . 

Here h(0)= log(-log (G(0)). 
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