
1. INTRODUCTION 
 
 Scientific efforts to describe explain and 
predict nature and natural processes are       
hampered by the lack of fully-developed    
mathematical techniques to deal with massive 
data irregularities and ruggedness. Mathematical 
analysis assumes that the objects of study are 
smooth, linearly ordered and, in most cases,  
regular. Nature and natural processes, on the 
contrary, are rugged, irregular, discontinuous 
and often characterized by complex, non-linear 
interactions (Palmer, 1992). Mandelbrot (1967) 
suggested the use fractals for modeling such  
natural phenomena. 
 Fractal is a general term used to describe 
both exhibit self-similarity, scale invariance, 
fractional dimensions and heterogeneity
(Mandelbrot the objects (geometry) and        
processes which exhibit self-similarity, scale 
invariance,   fractional    invariance,     fractional 
dimensions and heterogeneity (Mandelbrot, 
1982). These conditions are necessarily          
exhibited by all fractals in nature but they are 
not sufficient to completely define fractals. To  

 
 
date, a universally- accepted definition of a   
fractal has yet to be made but the absence of 
such a definition has not prevented scientists in 
varied disciplines to use the concept in applied 
work. 

 The use of fractals in ecology, biology and    
agriculture has been and is still actively pursued 
by scientists and researchers all over the world 
with relative success. Some of the problems     
successfully analyzed through fractals include: 
fractal dimensions of ecological landscape 
(Burrough, 1981); sustainable forestry (Crow, 
1990); inter-specific competition in                           
age-structured populations (Ebenman, 1987);    
dis-equilibrium silicate mineral textures (Fowler 
et al., 1987); forest geophysics (Khilmi, 1992); 
patterns of landscapes in disturbed environment
(Krummel,1987); and others. Notable in all          
these studies is the preponderance of heuristics 
and ad hoc procedures due, perhaps, to the ab-
sence of a mathematical framework for fractal                
analysis.  

This paper aims to discuss foundational   
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issues in statistical fractal analysis, present some 
new results and shed light on the strong         
connection between fractals and probability  
theory, as these apply to the study of social   
phenomena. We argue that most of the           
phenomena that had been modelled using the 
normal distribution can be more accurately    
analysed using statistical fractals since most of 
them exhibit self-similar stochastic patterns. The 
main advantage of using statistical fractal     
analysis over the classical normal distribution 
approach is that the former respects the inherent 
irregularities, ruggedness and stochastic         
self-similarity of natural phenomena while the 
latter tends to smooth out the values to conform 
to standard methods of statistical analysis using 
the normal curve. 
 Selvam (2011) succinctly describes the 
shift from normal distribution approach to     
statistical fractals as follows: “The Gaussian 
probability distribution used widely for analysis 
and description of large data sets                   
underestimates the probabilities of occurrence 
of extreme events such as stock market crashes,          
earthquakes, heavy rainfall, etc. The              
assumptions underlying the normal distribution 
such as fixed mean and standard deviation,   
independence of data, are not valid for real 
world fractal data sets  exhibiting a scale-free 
power law distribution with fat tails. Fractal           
fluctuations therefore exhibit quantum-like    
chaos. The model   predicted  inverse power law 
is very close to the Gaussian distribution for         
small-scale  fluctuations, but exhibits a fat long 
tail for large-scale fluctuations. Extensive data 
sets of Dow Jones index, Human DNA, Takifugu 
rubripes (Puffer fish) DNA are analysed to show 
that the space/time data sets are close to the 
model predicted power law distribution.” 
 
2. Self-Similarity and Scale Invariance 
 

Central to the study of fractals is the notion 
of self-similarity of an object at various scales. 
Horgan (1988) averred that fractals are          

geometric forms whose irregular details recur at         
different scales, that is, a fractal is a shape made 
of parts similar to the whole is some way 
(Mandelbrot, 1977). Self-similarity and       
scale-invariance, as described, can be translated 
mathematically as: 

 
Definition 1: Let f: V → V  where V is a 

vector space over the field R. If:  f (α ʋ)  = αk f 
(ʋ), α,k € R+ then f is said to be scale-invariant or 
self-similar of order k. 

In classical analysis, k∈ Z + is a non-negative 
integer and f  is called a  homogeneous function 
of order k. However, Definition 1 allows for 
fractional orders. In fact, the study of fractals 
can be subsumed under a larger conformal   
symmetry analysis. 

 
Theorem 1: If V = R, then the only scale       
invariant functions f: R → R   are the power 
functions:  
 
              f(x)= cxk , c ∈ R  where c= f (1). 
 
 We next define what we mean by a           
self-similarity dimension. 
 

Definition 2: The fractal self-similarity        
dimension of an object having m copies of itself 
and scaled by a factor r is:  

  d=  log m 
             log r 

 Thus, a regular square of unit side can be 
reproduced m = 4 times if we divide each side at 
the midpoint (r = 2). .A square will, therefore, 
have dimension:   
                 log 4        2log 2                
                 log 2        log 2  

 

The Cantor set is the traditional                
representation of a fractal. It is obtained by    
dividing the closed interval [0, 1] into three and 
removing the middle third. The process is      
repeated on the two pieces [0, ⅓] and [⅓,1] by 
removing the middle third on the first piece and 
the middle third of the last piece and so on. The 
iterative process yields the set: 
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   d=             =             = 2 as expected    



 
which looks like “fractal dusts“. The  dimension 
of the Cantor set is: 
  2log 2   
                   log 3       

 

   Nature is replete with examples of fractals. 
To use an example from the forest, the perimeter 
of a maple leaf is not smooth; it is jagged. With 
video imaging system, Vlcek and Cheung 
(1986) generated a one-pixel-thick computer 
image of a leaf and found the fractal dimension 
to be d = 1.21 by comparing the log pixel length 
with the log number of lengths: 

 d = log N λ , where λ = pixel length  
              log λ 

 

The usefulness of the fractal concept stems 
from its ability to describe apparently random 
structures within a precise geometry (Orbach, 
1987). The study of fractals, is, therefore,      
inextricably linked with statistical analysis. This 
exciting new area of statistics is now popularly 
known as statistical fractals. 

 
3. Fractal Statistics 
 
 The study of geometric fractals naturally 
leads to the study of scale-invariant probability 
distributions f(x). In particular, we restrict our 
attention to a random variable X whose support 
is non-negative and is scale-invariant. From 
Theorem 1, we know that f(x) has to take the 
form: 
 

          1…  f(x) =    A xλ  ,   Ө < x < ∞       
 
The particular power-law distribution of interest 
is given by: 
 

           2...      , Ө < x < ∞        
 

The exponent of this power distribution   
corresponds to the fractal dimension of X. The 
corresponding cumulative distribution function 
of X is easily shown to be: 

 

           
              3…                         ,Ө < x < ∞       

Power-law distributions are often used in 
practice when dealing with phenomena where 
there are smaller values then large values of X, 
e.g. income distribution more smaller values 
then large values of X, e.g. income distribution. 

 

Let x1, x2, …, xn  be iid F(x). A  maximum 
likelihood estimator of λ  is given by: 
           
  4 …. 
 

Alternatively, if we take the logarithm of 
both sides of Equation (2), we obtain:  

 

           5 … log f(x) = C—λ log ẋ 
 
so that a plot of log f(x) versus log x yields a 
downward  sloping line with slope λ. The slope 
of line (5) is, therefore, an estimate of the            
fractal dimension of X (or of the fractal object        
generated). 
 It is interesting to consider a practical        
situation where the observations actually come 
from a standard  normal distribution N (0,1) . 
In this case: 

 5.1 …. 
 

and so: 
 

      5.2 …. 
 
An application of formula (4) for    will 

show that   but    → 1/2 Equation (5) will not be 
linear with slope λ = 1/2. In other words, even if 
we obtained a fractional value of  λ, this need 
not imply that the observation came from a 
power – law distribution or a fractal distribution 

Next consider  x ḓ exp (β=1), then 
 5.3 … f(x) = e–x, x > 0   ,   
and: 
 5.3 … log f(x) = -x  
 
It follows that but    → 1 but Equation (15) 

is not linear. 
 

  d=             = 0.63 approximately   
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We note that in both instances, the         
probability distributions are not scale-invariant 
viz: f(α x) ≠ αk f(x) for some k and        .  

In fact: 
 

Theorem 2: The only scale invariant     
probability distribution f(x) are those for which  
y = x1-λ  is uniformly distributed where λ is the 
fractal dimension of  f(x) .    

Proof: Let f(x) be a scale invariant               
probability distribution of order λ, then

.  
       It follows that:                          
or: 
                                 , a power – law distribution. 

 

Let y = α1-λ so                  .   . The Jacobian of the 
transformation is the                      distribution of 
y is:  
 
           
          
  
 
 Since g(y)  is constant, it follows that y is      
uniformly distributed.  

Theorem 2 is a good test to determine    
whether the probability distribution from which 
the observations came from is fractal or not. 

 
Moments: Mean and Variance. Classical     
Statistics rely heavily on the mean to           
characterize the general behavior of a set of a set 
of data. Its use is justified on the basis of the 
fact that: 
 

           6 … Xn → µ   as  n →  ∞ 
where µ is the population mean. However, when 
the observations come from a power-law                
distribution, then Xn  either continues to         
decrease with more observations i.e.                   
Xn → -∞ as  n → ∞, or  Xn continues to                
increase without bound with more observations, 
i.e.  Xn → ∞  as  n →  ∞. The population mean 
µ  does not exist when λ < 1. It will exist when  

λ > 1 but the variance σ2 will not exist until λ 
reaches 2. The reliance to the Central Limit The-
orem when using X  as an estimator of µ will 
have to be carefully analyzed when sampling 
from real data. 

Since the first two (2) moments of fractal  
distributions may not exist, we replace them 
with statistical descriptive measures that always 
exist. To this end, define: 
 
Definition: Let δλ(x)=P(X ≤ x) where x ḓ f (x; 
λ), is a fractal distribution with dimension λ . 
The αth   quantile of X is  xα, and δλ (    ) = 1-α.   

The αth  quantile of X always exists. It is the 
point  in the distribution such that                          
(1—α) x 100%  of the observations is below it. 
An explicit expression for       is: 

 
    (7)                     , Ө  < x < ∞.                    
 
 In practice, we specify α and compute    . 

The usual choice for α is α=½ or the                
median, but there is no particular reason why α 
should always.The fractal dimension λ describes 
how many smaller values there are than larger 
values in a fractal distribution. Thus, if λ1 < λ2,  
then there are more smaller values in f (x;λ1)  
than in f (x;λ2). This is particularly useful in  
applied work. For instance, by estimating the 
fractal dimensions of incomes λ1  and λ2,                
respectively in two (2) provinces, we can infer 
which of the two provinces have more “poor” 
than “non-poor” residents. If    Province A has 
an income fractal dimension λ1 while Province 
B has an income fractal dimension λ2 and if               
λ1< λ2, then Province A will have more poor   
residents than Province B. That is, the poverty 
incidence in Province A will be larger than the 
poverty incidence in Province B. 

To see this more clearly, let X ḓ f (x;λ1) 
and let Y ḓ f (y;λ2) where λ1< λ2 . Then, the  
probability that an arbitrary x is less than an       
arbitrary y is:  
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(8) 
    
 

 
 
 
 

 
while the probability that an arbitrary x is             
greater than an arbitrary y is: 
  
      (9) 
 
Suppose that λ1 = 0.2 and λ2 = 0.5 and , then            
P (x < y) = 61.54% which P (x > y) = 38.46%
which  i.e. it is more   likely that  an arbitrary y 
will be larger than an arbitrary x. 
 
Distribution of the Sample Median. Let  x1,x2,
…,xn be  a random sample from F (X;λ) and let   
and let    = median {x1,x2,…,xn}. Then:   
   (10) P (   ≤   ) = P (half of the observation are  
                                  less than    )  
  
    
Hence: 
    (11) 

 
We note that (11) is a Binomial distribution 

with parameter    and n. by applying Slutsky’s 
Theorem, we obtain: 

 
    (12)    = E (  ) and                          where  
  

Ruggedness and Irregularities. A fractal 
object is characterized by its ruggedness and 
persistent irregularity in features yet self-similar 
Mathematically, this means that if the fractal is 
represented by a scale invariant function f (x) , 
then f(x) is continuous but nowhere                          
differentiable. The notion “differentiability”, 
therefore, needs to be re-examined. 

The concept of a fractal derivative or                  
fractional derivative can be used to describe the 
ruggedness of fractal features. Define 

 

 
(13)…                                             to be the usual  
differential operator. Let f(x) = xk  be a power 
law, it follows that: 
 
       (14)  
  
 
                                             
 

 

  
If k and α are positive integers, then (8) is 
properly defined. In order to generalize to              
non-integral factorials, we define: 
 
 (15)                                  
 
where: 

(16)                                . Equation (9) defines 
a fractal derivative which can be used to   
describe the “ruggedness” of a    fractal. It 
can be shown that: 

 
(17)  
 

which implies that it is possible to decompose 
an entire fractal object and observe the  resulting 
“ruggedness”. 

 
 We examine the behavior of a random      

variable X from a power distribution with fractal 
dimension λ. From Equation (3), let: 

 
        (18)…             where u ḓ U(0,1).  
 
It follows that:  
 
  (19) …              whose fractal derivative 
can be obtained from (9) using            and α = λ:  
 
        (20)       
                 
        
 
 
 
     
 
If the fractal dimension is λ = 1/2, then: 
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     (21)                                  and if λ = ⅓, then                        
 
     (22)  

 
The higher the fractal dimension, the more 

rugged the features become. 
 

 In classical statistics, the information             
number I defined by: 

 
      (23)                              is used to measure 

“dispersion”. As a counterpart, we propose to 
use a “ruggedness” measure:  
 
       (24)  

 
 The “ruggedness” measure compares the 
fractal variation of x with the random variable x 
with respect to the uniform measure substituting 
(14) and (13) to (18) yields:  
 
   (25)  
 
  
 
  
 
  
 
 
 
where                              .  
 
 We note that the “ruggedness” measure is a 
function of the fractal dimension λ. It describes 
how the irregularities in one scale are repeated 
in other scales. Equation (19) can be estimated 
from data when treated as a functional of the 
underlying F: 
 
         (26)   
 
 

The table below compares the  treatment of  
classical statistics and fractal statistics. 
 
 

 

Table1. Data invariants  

4. Applications in Real –World Modelling 

 
 We illustrate the applications of fractal    
statistics in two (2) settings: in Education, and in 
Poverty Estimation. 
 
 Education Setting: Test scores are often 
assumed to obey a normal distribution. For this 
reason, norm-referenced grading systems are 
based on the mean (and standard deviation). 
However, in reality, there will be more smaller 
scores than larger scores (especially in       
Mathematics classes). We are interested in   
modelling typical College Algebra classes in 
terms of their final examination scores. 
 In the first setting, the classes have the 
same fractal dimensions for their final            
examination scores. We generated thirty (30) 
observations from each of the classes (using λ = 
0.67) and obtained estimates of the common 
fractal dimension. The results are shown in    
Table 2.  
 
Table 2: Estimates of the fractal dimensions for 

Six (6) college Algebra classes  

 
 

Statistical 
Analysis 

Characteristics Spread 

A. Classical    
(Normal Dist.) 

Typical or               
Average: µ  

Standard           
Deviation:σ 

B. Fractal             
     Statistics 

Feature or Fractal 
dimension: λ  

Ruggedness 
Index: IR 
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Class Estimate of Fractal  
Dimension with N=30 

1 0.670619 
2 0.699700 
3 0.652898 
4 0.605367 
5 0.702470 
6 0.663639 

Average Fractal  
Estimate 

0.665782 

Standard Deviation 0.03561 



Note that the average fractal dimension    
estimate for the six classes is very close to the 
true fractal dimension of 0.67. 

The effect of the sample size on the estimate 
of the fractal dimension is shown in Table 3: 

 

Table 3: Effect of sample size on the fractal                 
dimension estimate 

 We note that the convergence to the true  
fractal dimension is not uniform. 

The results show that if the classes have the 
same fractal dimensions for their test scores, 
then the median score will be more or less the 
same for all the classes. Thus, instead of using 
the mean, the median will become the basis for 
grading the students in all the six classes. 

In the second setting, we determine what 
happens when the fractal dimensions of the test 
scores are different for the six classes. In other 
words, we are investigating the effects of                
different “fractalities” when combined as one 
set of observations. We generate 30 observa-
tions each for the six classes of fractal dimen-
sions λ =  0.30, 0.40, 0.50, 0.60, 0.70, 0.80 (note 
that the first classes have more larger scores 
than any of the remaining five classes). Table 4 
shows the results of the simulation.  

The average of the fractal dimensions is 
0.49998 which is not the same as the fractal   
dimension of the aggregated class                              
(λ = 0.581064). The mean tends to smooth out 
the values of the test scores whereas the fractal   
dimension preserves the inherent “ruggedness” 
and “and “irregularities” of the test scores. The 
median scores for the six (6) classes and the  
median of the aggregated class are shown                   
in Table 5.  

Table 4. Six (6) classes of different fractal     
dimensions and the fractal               
dimension of the aggregated class  

 
Table 5. Median scores of the six classes and the 

aggregated class 

 The six classes had been set up so that the 
poorer students are placed mostly in the first 
class and the better ones in the sixth class.    
Taking the aggregated median score as the 
benchmark for all the six classes would favor 
the 5th and the 6th classes while marginalizing 
the first four classes. Meanwhile, if we consider 
the median of the median scores (62.93 + 
78.63)/2), we would obtain a more realistic 
benchmark value of 70.78 for the aggregated 
class. 
 The rationale for using the median of the 
median scores as a benchmark value can be  
stated this way. For the individual classes, we 
decided to take the 50th quantile (median) as a 
reasonable location parameter because the     
observations come from a fractal distribution. 

Sample  
Size 

Estimate of  
Fractal  

Dimension 

Standard 
Deviation 

30 0.665782 0.0361 
60 0.685831 0.0330 
90 0.672024 0.0201 
120 0.657534 0.0199 
240 0.671502 0.0110 

Class  
(N = 30) 

Estimated  
Fractal Dimension 

Standard  
Deviation 

1 0.221184 0.031 
2 0.332443 0.032 
3 0.443826 0.034 
4 0.554962 0.035 
5 0.666333 0.033 
6 0.777531 0.035 

Aggregated 
Class  (N = 180) 

0.581064 0.010 
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Class Median Score 

1 44.94 
2 52.43 
3 62.93 
4 78.63 
5 104.89 
6 157.30 

Aggregated Class 83.55 



When the classes are merged, the medians will 
preserve the “fractality” of the original           
observations, hence, it is logical to obtain the 
50th quantile (median) of the merged fractal    
observations. 

Poverty Estimation Setting. Poverty               
measurement remains an active area of research 
in the social sciences. This interest stem from 
the inclusion of poverty reduction (and hence, of 
poverty monitoring) as one of the Millennium 
Development Goals (MDG) for 2015 (United 
Nations Development Programme (UNDP), 
2010). Alkire (2010) suggested the use of a             
Multidimensional Poverty Index or MPI which 
measures deprivation across Health, Education 
and Standard of Living. The MPI measures a 
different aspect of poverty from the usual      
income-based poverty index. Balicasan (2011) 
averred that there is a need to re-examine the 
weights applied to the different poverty         
dimensions (Health, Education and Standard of 
Living) in order for the MPI to be more         
reflective of the realities in the field. It will be 
noted that a poverty monitoring index has to be 
simple (easy to compute) and comprehensive in 
order for it to be widely – accepted for a cross – 
country comparison of poverty situations. The 
use of fractal indices of poverty satisfies this 
entire criterion and has the potential for wide 
applicability in the field of poverty estimation.  
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