
1. INTRODUCTION 
  
 Seismic analysis or the study of           
earthquakes is a very active area of research due 
to the urgency felt by people worldwide to      
develop methods for predicting or at least    
forecasting when such a devastating              
phenomenon would happen. Advancements in 
physical sciences, engineering, information 
technology and mathematical sciences have    
provided new avenues for predicting the        
occurrence of earthquakes. One of the most    
recent tools used by scientists worldwide to   
predict earthquake occurrence is statistical   
fractal analysis (Lapenna et al., 2003). This   
paper      attempts to fit a fractal or a multifractal          
distribution to the Philippine seismic data from 
2011 to 2013 with the hope of providing a tool 
for earthquake prediction which will be useful 
for disaster risk management and control. 
 Smalley et al. (1987) pioneered the use of 
fractal methods in seismic analysis which is  
reported by Kagan (1994) in a review of                 
experimental evidences for earthquake                  
scale-invariance. In earlier works, a single                    

 
 
fractal exponent was  used in conjunction with 
earthquake modeling Lapenna et al., (2001) but 
later evidences point to the need for multiple 
fractal exponents to explain the behavior of  
seismic patterns (Lapenna, (2013). Padua et.al. 
(2013) developed a test for determining whether 
a set of observations is monofractal or                    
multifractal. Most of the studies on fractal        
methods, however, were done in European 
countries and the United States with little or 
negligible papers in Asia on the matter.  

In the Philippines, fractal methods are hardly, 
if ever, used in conjunction with the problem of 
earthquake predictions and seismic analysis. 
Traditional seismic analysis techniques are still 
being used whilst at the same time attempting to 
acquire sophisticated earthquake detection      
instruments at the PHILVOLCs of the            
Department of Science and Technology (DOST-
Philvolcs, 2013). For instance, time series           
observations of earthquake occurrences using 
Discrete Fourier transforms had been tried out in 
the past (University of California-Los Angeles, 
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1992) but since then, little progress had been 
achieved on the matter of seismic analysis and 
prediction. An analysis of the available seismic 
data from the agency through fractal methods 
would be useful for the agency and the general 
public as it provides new insights into this                
phenomenon. 

 
2. Statistical Fractals 
 
 Statistical fractal observations are relatively 
new in the discipline of Statistics. While                
classical statistics depend on the existence of a 
mean (µ) and variance (σ2) of a set of normally 
distributed random observations [N(µ,σ2)], most 
real- life observations do not possess a mean 
nor a variance. Random observations that obey 
a  fractal observation are characterized by    
having smaller values than lesser values        
repeated at  different scales. Such fractal       
distributions are represented by the power-law 
probability density function: 
 
   1…                      ,  λ>1, θ >1, x ≥ θ 

where θ is the minimum of the x’s and λ is the 
fractional exponent. The term “fractal “is       
derived from the fact that the exponent of (1) is 
fractional. 
 

  The cumulative distribution function (cdf) 
of (1) is given by: 
 
      2…  
 
If x1, x2, … xn are earthquakes magnitude     
obeying a fractal distribution (1), then one can 
compute the probability that an earthquake of 
magnitude between xk and xk+t will occur as:  
 
     3… P (xk < x < xk+t) = F (xk+t) – F(xk) 
 

For this reason, fitting a probability model 
such as (1) to the seismic data in the Philippines 
would be useful.  
 

In Padua et.al. (2013), observations of                
x1, x2,…,xn coming from an unknown                     
distribution G(•) are fitted to a fractal             
distribution with fractal dimensions as follows: 

 
  Let                         and denote αk                

quartile       . It  follows that  
Since (x(α)) = α, it follows from (3) that  

  
4.   

 
 where θ is the observed minimum of the x’s. 
These values of λ approximately exponentially 
distributed so that the mean exists with an     
estimator: 
 
         5.           

The authors then proceeded to develop a 
mono fractality test whose algorithm is given 
below: 

Test Algorithm 
(1) Sort x1, x2, …, xn from smallest to highest. 

Denote the sorted values by x(1)≤x(2)≤...x(n).     
 
(2) Assign the weights αi = i = 1,2,…, n.               

Remove the last observations (highest      
observation). Let θ = x(1). . 

(3) Compute     based on (4) and (5). 
(4) Do a time series plot for,  i  = 1,2,…, n-1, 

and regress       versus t where t is defined in 
result 2,  

  
 4.1. If Ho: b = 0, then conclude {x1, …, xn} 

came from a power – law distribution 
with fractal dimension λ; 

  
        4.2. If Ho: b = 0 is rejected, then there is a 
 trend and {x1,…,xn} come from a non  
               – fractal distribution; 
 
 4.3. If the plot shows that for 0 < α < αi ,               

b =  0, i -1, …, n-1 then there are            
multiple values of λ, λ1, …, λn  for 
each segment 0 < α < αi, and the data 
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came from a multifractal distribution. 
 

 

3. Fitting a Fractal Distribution on Philippine 
Seismic Data 

 
 Data from the NET supplied by the           
Department of Science and Technology-
PHILVOLCS on a daily basis from 2011 to to 
2013 were used for the study. Approximately 
data points were obtained both for the                     
magnitude of the seismic signals and                      

inter-event times (2,964 data points). The                   
inter-event times (τ) were manually computed 
based on the published data from the DOST. 

A plot of the earthquake magnitudes (on a 
Richter scale) is given in figure 1.                 
 The plot shows that earthquakes of          
magnitudes 5 and above on the Richter scale are 
few with seismic records cluster around 3 or 
lower on the Richter scale. 
 

Figure 1. Time series plot of the earthquake magnitudes from most recent records of seismic                  
                disturbances in the Philippines  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Time series plot of the estimated fractal dimensions from most recent seismic              

observations 
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Following Padua et al. (2013) we proceeded 
to fit a fractal distribution on the quantiles of the 
data set. The results are shown as a time-series 
plot of the fractal dimensions as shown in figure 
2.  

The estimated mean fractal dimension is 
1.4926 with a standard deviation of 0.3131. 

Note that this fractal dimension is larger than 
the fractal dimension of a normal sequence of 
random variables. The plot of lambda versus 
scale is given in Figure 3 while for comparative 
purposes, we have plotted the fractal dimension 
against scale for the absolute values of N(0,1) in 
Figure 4.  
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Figure  3. Plot of fractal dimensions versus scale for earthquake dimensions.  

Figure  4. Plot of standard normal fractal dimensions against scale.  
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The fractal dimensions of the earthquake 
magnitudes appear to follow an exponential   
distribution with mean (1.6657). The estimated 
fractal distribution for the magnitudes of    
earthquakes in the Philippines is therefore:  

 
Fractal Model for Earthquake Magnitudes in 
the Philippines: 
 
        6.                                    , x ≥0.9 
 

 Using this model, we can estimate the           
probabilities of occurrence of earthquakes of 
various magnitudes in the future.  

Table 1. Earthquake magnitudes in the         
Philippines: probability of  occurrence.  

Seismic disturbances of magnitudes 4.5 or 
higher have the potential to cause from        
moderate to extreme damage. Table 1 above 
shows that the probability of such an event   
happening is approximately 10.67% (or 11%). 
Table 2 is culled from the US Geological      
Survey to guide in the interpretation. The    
earthquake with the largest magnitude of 8.4 in 
the Richter scale that hit the Philippines,        
according to Table 2 can cause “ Major damage 
to buildings; structures likely to be destroyed. It 
will cause moderate to heavy damage to sturdy 
or earthquake-resistant buildings. Damaging in 
large areas, will be felt in extremely large      
regions.” Death toll ranges are quite high and 
will be dependent on the population density of 
the area hit.  

Earthquakes of the magnitude previously 
described rarely hit the country. The estimated 
probability of one such occurrence is less than 
1% (.0035 or 0.35%) so that in a 365-day year, 
an earthquake of intensity 8 or higher, will    
almost certainly not occur (99.65%). Despite the 
very low probability of occurrence of            
devastating earthquakes, governments all over 
the world are still spending time and effort in  

Range           
Magnitude of 
Earthquake 

(Richter Scale) 

Probability of 
Occurrence 

Probability  
in  

Percent 

0.9 to 1.5 0.121758 12.18% 
1.6 to 3.1 0.114621 11.46% 
3.2 to 4.7 0.050544   5.05% 
4.8 to 6.3 0.030082   3.01% 
6.4 higher 0.026107   2.61% 

Table 2. Guide to interpretation of earthquake effects  
 

Magnitude Description Mercalli 
Intensity 

Average Earthquake Effects Average frequency of 
occurrence (estimated) 

Less than 2.0 Micro I Micro earthquakes, not felt, or felt rarely 
by sensitive people. Recorded by                   
seismographs. 

Continual/ several             
million per year 

2.0–2.9  
Minor 

I to II Felt slightly by some people. No damage 
to buildings. 

Over one million per 
year 

3.0–3.9  II to IV Often felt by people, but very rarely causes 
damage. Shaking of indoor objects can be 
noticeable. 

Over 100,000 per year 

4.0–4.9 Light IV to VI Noticeable shaking of indoor objects and 
rattling noises. Felt by most people in the 
affected area. Slightly felt outside.                
Generally causes none to minimal damage. 
Moderate to significant damage very                
unlikely. Some objects may fall off shelves 
or be knocked over. 

10,000 to 15,000           
per year 
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Table 2. cont. Guide to interpretation of earthquake effects  
 

(Based on U.S. Geological Survey documents.)(^http://earthquake.usgs.gov/earthquakes/recenteqsus/Quakes)  

Magnitude Description Mercalli 
Intensity 

Average Earthquake Effects Average frequency of 
occurrence (estimated) 

 
 

5.0–5.9 

 
 

Moderate 

 
 

VI to VIII 

Can cause damage of varying severity to 
poorly constructed buildings. At most, 
none to slight damage to all other                
buildings. Felt by everyone. Casualties 
range from none to a few. 

 
 

1,000 to 1,500 per year 

 
 
 
 

6.0–6.9 

 
 
 
 

Strong 

 
 
 
 

VII to X 

Damage to many buildings in populated 
areas. Earthquake-resistant structures            
survive with slight to moderate damage. 
Poorly-designed structures receive                 
moderate to severe damage. Felt in wider 
areas; up to hundreds of miles/kilometers 
from the epicenter. Damage can be caused 
far from the epicenter. Strong to violent 
shaking in epicentral area. Death toll             
ranges from none to 25,000. 

 
 
 
 

100 to 150 per year 

 
 

7.0–7.9 

 
 

Major 

 

VIII or 
greater 

Causes damage to most buildings, some to 
partially or completely collapse or receive 
severe damage. Well-designed structures 
are likely to receive damage. Felt in             
enormous areas. Death toll ranges from 
none to 250,000. 

 
 

10 to 20 per year 

 
 
 

8.0–8.9 

 
 
 
 
 

Great 

 
 
 
 
 

VIII or 
Greater  

Major damage to buildings, structures  
likely to be destroyed. It will cause             
moderate to heavy damage to sturdy or 
earthquake-resistant buildings. Damaging 
in large areas, will be felt in extremely 
large regions. Death toll ranges from 100 
to 1 million. 

 
 

One per year (rarely 
none, two, or over two 

per year) 

 
 
 

9.0–9.9 

  Severe damage to all or most buildings 
with massive destruction. Damage and 
shaking extends to distant locations.               
Permanent changes notable in ground  
topography. Death toll ranges from 1,000 
to several million. 

 
 

One per 5 to 50 years 

developing more accurate and precise           
techniques for predicting their occurrence,     
particularly in the spatio-temporal scale because 
of the very serious consequences of earthquakes 
with large magnitudes. Further analysis of the 
data set, however,  revealed that the earthquake 
magnitudes can be expressed more precisely as 
multifractal random variables. More                             

specifically,  regression runs of lambda versus 
scale, revealed at least three fractal dimensions: 
λ1 =1.0059, λ2 = 1.4926,  λ3 = 2.1170, and                 
possibly many more.  The histogram of the                     
estimated values of the fractal dimensions is 
shown below and appears to behave like an ex-
ponential random variable or possibly a normal 
random variable: 
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A quick test for normality of lambda by the 
Kolmogorov-Smirnov statistic revealed that in 
fact the fractal dimensions are not normally   
distributed. 

In fact, it appears  that the fractal                 
dimensions  behave like exponential random 
variables with mean 1.4926 and minimum 
1.005. The model is: 

           7.     g(λ) = Ae-kλ, λ > 1,  
 
where A and k are determined so that g (.) is a 
probability density function on λ >1. After               
doing the required calculus, we find that: 
 

8. k = ln        or A = kek . This means 
that (7) becomes: 

 
           9. g(λ) = keke-kλ = ke-k(λ-1) λ > 1. 
 
     The expected value or mean of distribution 
(9) is µλ = 1 +   . The estimated mean of the 
fractal dimensions is 1.4926 so the value of k is 
k =         = 2.030. We can now take (9) as a                 
prior distribution of λ in a Bayes sense to obtain 
the distribution (10) below: 

10.      g(λ) = 2.030 e-2.030(λ-1) λ >  
  
 We can derive the multi-fractal distribution 
by Baye’s theorem: 

 
Estimated Multifractal Distribution of  
Earthquake Magnitudes:  Philippines  
 
f (x,λ) = f(x/λ)g(λ) =                   (2.030) e-2.030(λ-1) 
 
11.f(x,λ) =1.111                   e-2.030(λ-1), x ≥ 0.9, λ≥ 1 
 
 Equation (11) can now be used to revise 
the estimates of the probabilities of occurrence 
of earthquakes within certain magnitude ranges. 
The revised estimates are given below using the 
mean fractal dimension: 

Table 3: Revised Estimates Based on a        
Multifractal Model 
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Figure 5. Histogram of the estimated values of the fractal dimensions 

Range Magnitude of 
Earthquake (Richter 

Scale) 

Probability of         
occurrence 

Probability 
in Percent 

0.9 to 1.5 0.09093 9.09% 
1.6 to 3.1 0.0856 8.56% 
3.2 to 4.7 0.037747 3.77% 
4.8 to 6.3 0.022465 2.25% 
6.4 higher 0.019497 1.95% 
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 We note that the revised Bayesian estimates 
of occurrences of various earthquake            
magnitudes have reduced significantly. 
 
4. CONCLUSIONS 
 
 The magnitudes of earthquakes that occurred 
in the Philippines from January 1, 2011 to April 
12, 2013 were found to obey a fractal             
distribution with fractal dimension λ = 1.492. 
More precisely, the earthquake magnitudes    
consisted of several fractal dimensions and are 
therefore better modeled in terms of a           
multifractal distribution. The multifractal       
distribution is constructed using Bayesian   
methods where the observed fractal dimension 
is a priori modeled as an exponential                  
distribution with mean 1.4926. Estimates of                 
occurrence of various earthquake magnitudes 
are provided and results suggests that potentially 
damaging earthquakes (magnitude 4.5 above) 
will occur with more than 10% probability. 
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